

Design for Insensitive Munitions Compliance of XM1069 120mm Multipurpose Tank Round

TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.

D.G. Pfau, S.E. DeFisher, D.A. Suarez, E.P. Scheper, E.L. Baker RDECOM-ARDEC Picatinny Arsenal, NJ

Outline

- XM1069 Intro
- Fragment Impact
 - Modeling
 - Test
- Cookoff venting
 - Penetration modeling
 - Cookoff testing

XM1069

- 120mm, Fin-Stabilized
 Multimode Tank Round
- Filled with ~5lbs PAX-3
 - HMX, Aluminum, Binder
- Computationally optimized
 - Outstanding performance against urban targets, light armor and personnel

Fragment Impact

- Standardized IM test (STANAG 4496)
- 8300 ft/s (formerly 6000 ft/s) mild steel fragment
 - Shot in tactical configuration, shot in logistical configuration
- Possible shock initiation, shear or cookoff
- Required: Type V/Burn

Non Explosive Main Fill

- First approach, tried-and-true
- 4M elements
- Approx 1200 cpu-hours on ARL HPCC
 - 3 calendar days on 32 cores –
 Ended by time limit
- HE main fill modeled as a Mie-Grüneisen EOS with no strength model

Plastic

- Used PMMA or other plastic material with constitutive model
- Pressure peak at 45 kbar
- Added strength model makes penetration much more shallow

Animations

Inert Explosive Mie-Grüneisen No constitutive model

Inert Explosive Mie-Grüneisen Constant yield and shear modulus

TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.

Visco-SCRAM, Visco-DCA

SCRAM

- Material is characterized by a number of springs and dashpots with statistical cracks
- Older version has thermal effects in cracks, new version does not
- Initially we only have PBX9501

DCA

- Also visco-elastic form of material
- Used for brittle HEs
- Behavior determined by "dominant crack," not an average
- No thermal term, yet
- Initially we only have PBX9501

n Maxwell elements (Visco)

plus Statistical CRAck Mechanics (SCRAM)

-or-

Dominant Crack Analysis (DCA)

Visco-SCRAM v1

- Pressure peak is very low ~16kbar
- Fragment doesn't penetrate and even rebounds at the end
- Pressure trace shows damped oscillation
- Takes a very long time to run compared to MG

Visco-SCRAM v2

- Very similar to v1
 - Only crack mechanics updated
 - Hotspot model not included
- Pressure peak is higher than v1, lower than plastic

Visco-DCA

- Similar to Visco-SCRAM
- Differences would likely be in the damage morphology in the billet
- Much higher cost than SCRAM
 - Several days on 100+ processors

Experimental Results

- 5728 ft/s FI test conducted by General Dynamics
 - Type IV due to pressure and dent in witness plate
 - M&S Predicted 24kbar
- 2759 ft/s BI test
 - Type IV due to pressure and flight of closure disc

Future Work

- Fragment Impact will be modeled and tested with a RM PIMS liner
- Liner creates a hugioniot mismatch which reduces transmitted pressure

Baseline Cookoff

Type III (unofficial)

Baseline testing 50F/hr

TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.

Cookoff Features

- Vent holes are needed to exhaust gasses during cook-off
- Vent hole size needed according to STEX testing: 12 holes x Ø0.58"
- Modeling performed to see the effect of vent holes on performance

Offset holes

Aligned slots

Aligned holes

Staggered slots

Concrete Penetration

- All of the designs meeting the required vent area failed to penetrate
 - IM vents weakened
 the wall enough
 that the body
 collapsed

Concrete Penetration

- Design chosen: compromise vent hole size
 - Ø0.30 holes found to penetrate
 - ø0.45 holes did not penetrate but made it ~2/3 through the wall
 - Ø0.58 did not penetrate

Ø0.30: Clears the target wall intact

ø0.45

Upcoming Work

- Vented design to be tested at ARDEC
- PIMS-lined warhead to be tested

