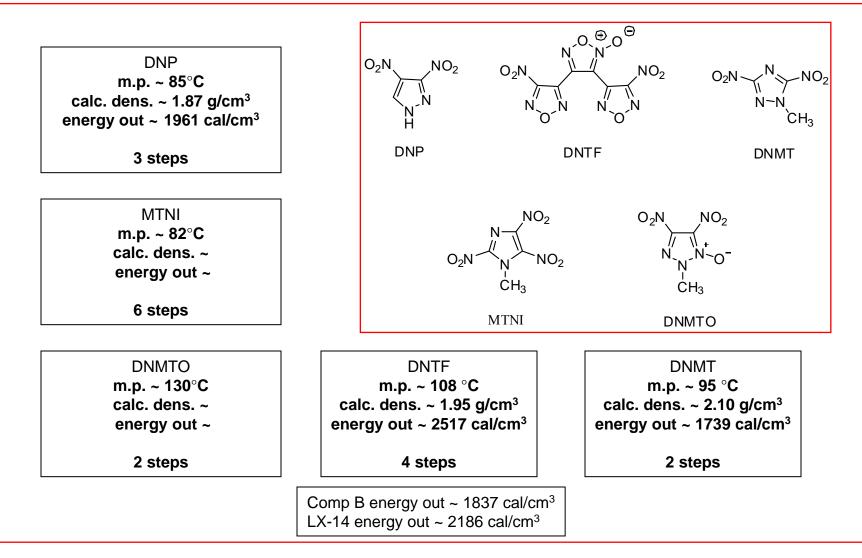


- Synthesis of New Energetic Melt-Pour Candidates
- Dr. David Price*, Dr. Jacob Morris
- BAE Systems/HSAAP
- May 2009

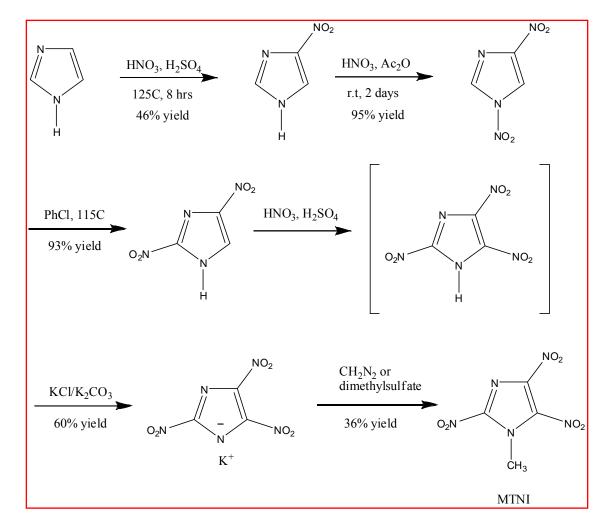
Background

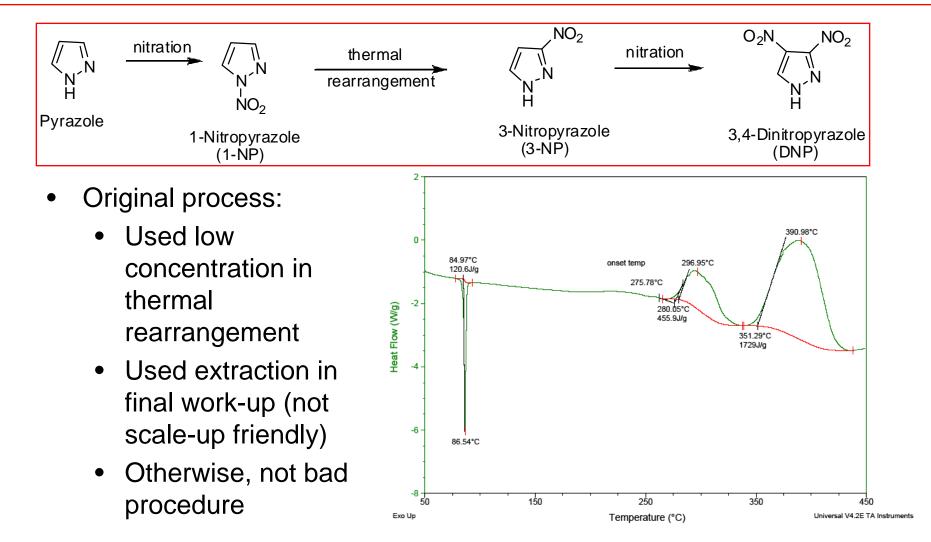
- TNT has been the backbone of melt-pour explosives for most of the 20th century.
 - Not IM enough for today's standards
- DNAN is:
 - quickly becoming the favored replacement for TNT due to its superior IM properties.
 - not very energetic and performance of DNAN-based explosives suffer as a result.
- Future melt-pour energetics need to have best of both worlds:
 - Superior IM properties
 - Good explosive performance

- •Identify and Prepare New Melt Pour Ingredients with Inherent Comp B Performance
- •Evaluate Candidates Using Small Scale Safety and Performance Testing
- •Evaluate Scalability of Synthesis
- •Evaluate Formulation Characteristics

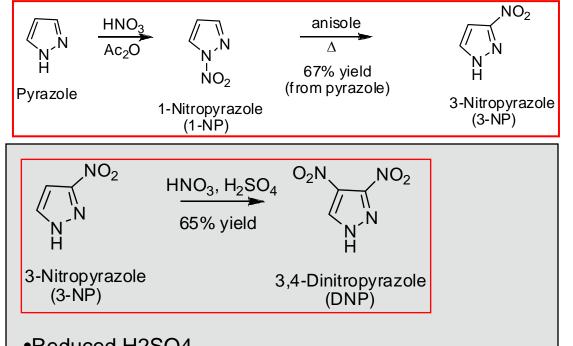

Selection Criteria:

Melting Point in Desired Range (80-120C)
Sufficiently High Predicted Density
Perceived Ease of Preparation


Candidates compounds

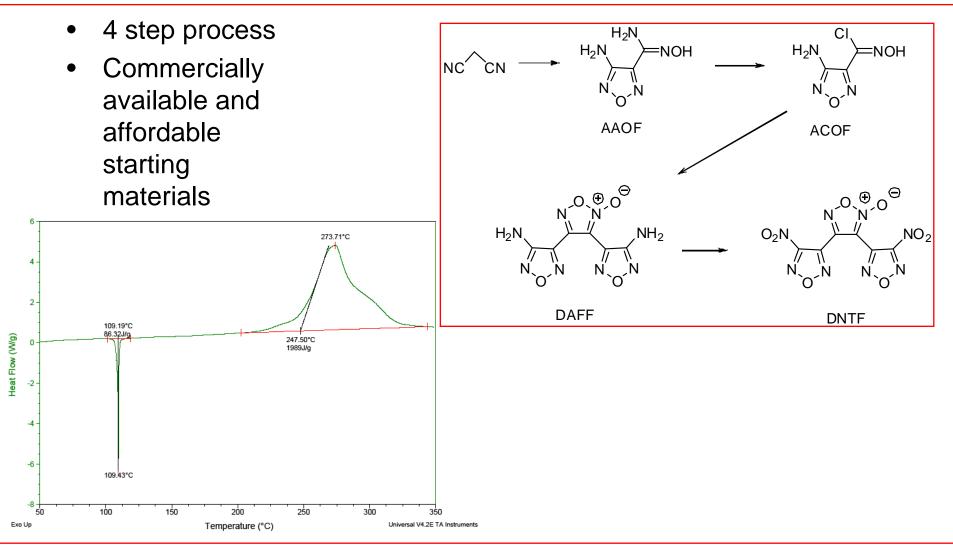

MTNI

- Original process:
 - Complicated (6 steps with methylation)
 - Low yielding (9% to 18%)
- Lots of effort on finding entirely new route to:
 - Avoid highly toxic chemicals
 - Minimize steps
 - Increase producibility
- Bottom line:
 - Didn't find a better way



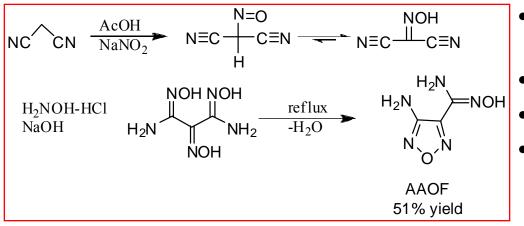
DNP

DNP Improvements

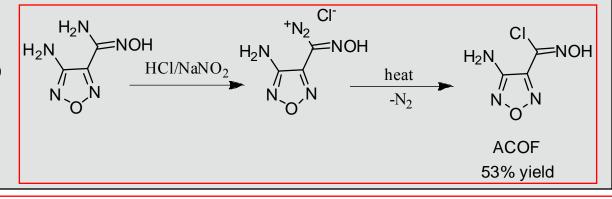


- •Reduced H2SO4
 - •Majority of DNP precipitates from solution
- •Recrystallize with common inexpensive solvents
- •40% overall yield from pyrazole
- •5 lbs. produced

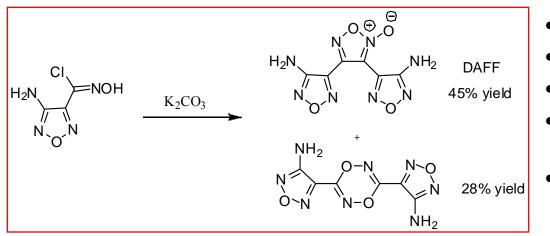
- 1st step:
 - Nitration; acetyl nitrate in situ
 - 1-NP sublimes at ambient pressure (difficulty drying)
- 2nd step:
 - Used anisole/water
 azeotrope to remove water
 - ARC studies confirmed safe range
 - <40% in anisole @ high temperature.
- 67% yield of 3-NP based on pyrazole



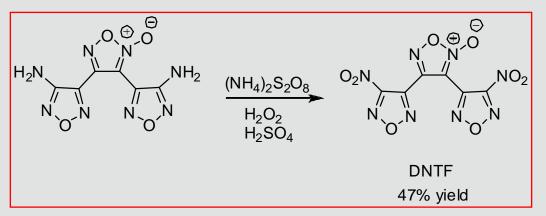
DNTF



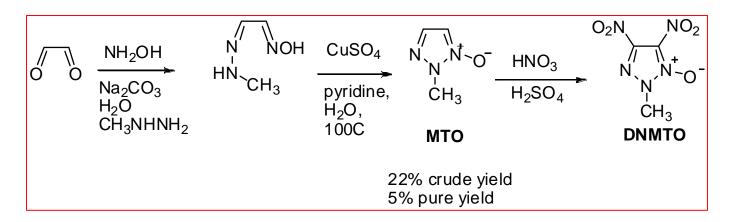
DNTF


- Straightforward 3 step, 1 pot synthesis
- Scalable; several 1 kg batches
- 50% yields
- 90% yields reported when pH is tightly controlled during H2NOH-HCl addition

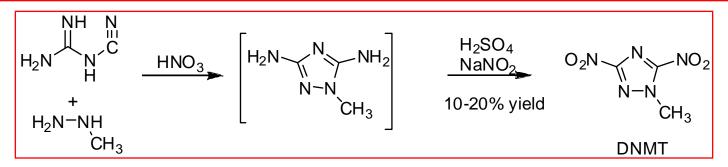
- Diazotization/substitution
- Stable diazonium salt intermediate
- Product a severe skin and respiratory irritant
- Transfer wet to next step; no isolation
- Scalable; ca. 1 kg produced
- 50% yields, unoptimized



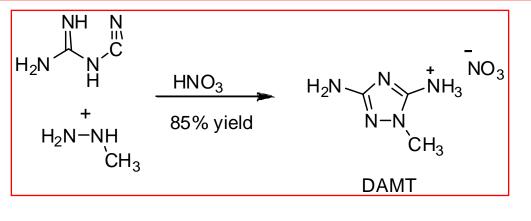
DNTF

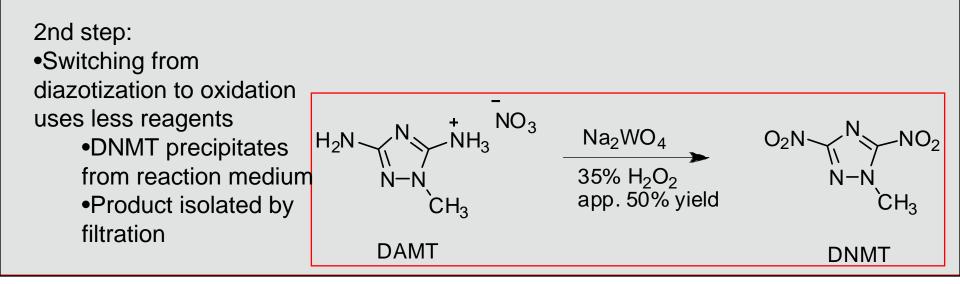

- Heterogeneous; slurry in MTBE
- Low temperature
- Usually 2:1-DAFF:DAFD
- 50% yields of DAFF, not optimized
- Scalable with improved temperature control; 0.5 lbs produced

- Strong oxidation conditions required
- 24 hrs. @ ambient
- App. 50% isolated yield
- Isolation/purification problematic
- 99% yields reported by Dong, et al. using same reagents
- Optimization of conditions? Time and temperature?


DNMTO

- MTO procedure from Prof. Begtrup, et al
 - Poor yield reproduced independently by Prof. Katritzky's group at UF
 - No improvements could be made
- Although reported nitration is high yielding, our efforts did not go that far


DNMT


- Original procedure:
 - Pseudo one pot reaction
 - Developed by Prof. Katritzky, et al.
 - DNMT soluble in acidic water
 - Extraction required
 - Synthesis/purification not optimized
 - 25 grams produced by this method

DNMT Improvements

- Moved from one-pot to two-pot sequence
- 1st step:
 - Isolation of DAMT enhanced by minimizing water in reaction
 - Product precipitates from reaction medium
 - Isolated by filtration

Safety Testing

ARDEC-Picatinny Arsenal

	ERL Impact (cm)	BAM Friction (N)	ESD (J)
DNP	67.4	>216	>0.25
DNTF	<15.8	>64	>0.25
DNMT	>100	>252	>0.25
RDX	25.4	>144	>0.25

OSI-Holston

Impact Sensitivity (cm), Navy Method					
	Pre-melt	Post-melt			
DNP	54.1	146.9			
DNTF	~17	<8			
DNMT	92.7	171.0			

Melt-recrystallization might provide amorphous character
Potentially remove crystalline defects/hot spots
Appears valid for DNP, DNMT
DNTF-long recrystallization time; highly crystalline

Performance-Rate Stick/Plate Dent

	Pcj, calc. (GPa)	Pcj, exp. (GPa)	Energy out, calc. (cal/cc)	VOD, exp. (Km/s)
DNP	28.8	29.4	1961	8.104
DNMT	25.4	23.3	1739	7.850
Comp B	27.7	~27.6	1837	~7.960
DNTF	35.9		2517	
LX-14	35.1	~37	2186	~8.800

Compatibility Evaluations

- •1:1-Mass:Mass Physical Mixtures of HSAAP Formulation Ingredients
- •DSC @ 5 °C/min. from 50 to 450 °C
- •Observe Changes in Exotherm Onset and Peak for Lowest Value Component
- •Negative Deviations ≥10 °C Indicate "Fail"; Invoke VTS

Compatibility Matrix

DNP		DNTF		DNMT					
	MP	Exo Onset	Exo Max	MP	Exo Onset	Exo Max	MP	Exo Onset	Exo Max
NEAT	86.5	275.8	296.9	107.5	230.2	270.7	95.7	260.6	280.0
RDX MP Exo Onset Exo Ma 203.6 205.8 227.9	83.8	202.6	234	106.6	204.6	227.2	88.2	204.3	230.9
HMX MP Exo Onset Exo Ma 187.2 276.3 284.2	86.7	203.3	221.2	108.1	239.3	260.1	93.7	223.4	252.8
NTO MP Exo Onset Exo Ma N/A 262.3 273.4	x 86.4	175.7	237.7	108.2	253.9	257.9	97.7	176.9	231.4
TATB MP Exo Onset Exo Ma N/A 366.56 373.8	86.7	193.3	273.7	108.4	234.6	267.8	97.6	227.1	243.5
DNAN MP Exo Onset Exo Ma 94.2 326.9 342.9	\$ 57.9	203.9	302.9	68.9	241.8	271.9	54.8	301.6	322.3
NQ MP Exo Onset Exo Ma N/A 195.2 202.8	84.2	182.5	222.7	108.5	182.8	225.5	95.3	182.7	222.8
DNP MP Exo Onset Exo Ma 86.5 275.8 296.9	ĸ			78.3 /102.1	208.5	248.7	46.25	285.4	345.6
DNTF MP Exo Onset Exo Ma 107.5 230.2 270.7	<						81.1/92.5	233.8	268.7

Conclusions

- DNP was optimized and scaled to produce 5 lbs of material
- MTNI was discontinued due to complicated synthetic route (not easily scalable, costly)
- DNMT was discontinued although not before showing some promise of scalability and affordability
- DNMTO was discontinued due to terrible yields in first synthetic step
- DNTF was discontinued due to sensitivity concerns with final product

Acknowledgments

- RDECOM-ARDEC
 - Mr. Omar Abbassi
 - Mr. Sanjeev Singh
 - Dr. Reddy Damavarapu
 - Mr. Philip Samuels
 - Mr. Paul Vinh
- BAE Systems, HSAAP
 - Mr. Gary Clark
 - Mr. Jim Owens
 - Ms. Kelly Guntrum
 - Ms. Lisa Hale

