

Innovation ... Delivered.

Laboratory Scale Nitration of Cellulose as a Cost Effective Risk Mitigation Tool for the Production of Nitrocellulose at Radford Army Ammunition Plant

Dr. Benjamin R. Vaughan, Zach Higginbotham, Dr. Anand Mangalam, Leslie.Ben'Ous, Peter Bonnett May 13,2009

A premier aerospace and defense company

NITROCELLULOSE MANUFACTURING AT RFAAP

LAB SCALE NITRATION / STABILIZATION

PART I: LAB SCALE NITRATION STUDY

- MIXED ACID COMPOSITION
- KEY INPUT VARIABLES EFFECTS

PART II: CELLULOSE SOURCE STUDY

- KRAFT VS SULFITE PULP
- ACADEMIC WORK

NITROCELLULOSE MFG. 101

A premier aerospace and defense company

ATK

LABSCALE NITRATION

A premier aerospace and defense company

NITRATION

ACID BOILING

CELLULOSE

- 1.Demonstrate that laboratory nitration can be used as a tool to aid production with risk mitigation associated with sensitive products
- 2.Understand how <u>mixed acid composition</u> and <u>key process input variables (KPIV)</u> change our nitrocellulose in terms of:
- % Average Nitrogen
- Acetone solubility, and Ether / Alcohol Solubility
- Processing of NC

Water sensitivity models developed for Grade D and E nitrocellulose products

AFY09 NC production data fits within lab scale model's 95% prediction limits for Grade D NC

Process data fits have led the NC technical team to use less water set changes during manufacturing

Nitration with various mixed acids

ATK

A premier aerospace and defense company

PRODUCTION IS CURRENTLY USING THE MODELS DEVELOPED IN THE LAB TO ADJUST NITRATING ACIDS FOR PRODUCTION OF GRADES D AND E NITROCELLULOSE

%NITRIC

KEY PROCESS INPUT VARIABLES AFFECTING ATK NC

						P	pieniei aei	uspace and		прапу
Run	Time (min)	Temp (°C)	A/C Ratio	Cellulose	%N	AI	EA %Sol	%N	AI	EA %Sol
					GRADE E			GRADE D		
1	HIGH	LOW	HIGH	Chips	12.051	0.21	99.70	12.315	0.93	98.93
2	HIGH	HIGH	HIGH	Fibers	12.038	0.19	99.71	12.251	0.59	98.28
3	MID	MID	MID	Fibers	11.740	0.59	98.70	12.182	0.22	99.18
4	LOW	HIGH	LOW	Fibers	11.740	0.91	97.78	12.040	1.16	97.57
5	HIGH	HIGH	LOW	Chips	11.819	0.10	99.94	12.105	0.07	99.66
6	HIGH	LOW	LOW	Chips	11.804	2.30	97.78	12.038	4.15	95.46
7	LOW	HIGH	HIGH	Chips	12.043	1.14	98.65	12.371	0.93	99.14
8	LOW	LOW	HIGH	Fibers	11.809	1.93	93.71	12.235	2.50	93.72
9	LOW	LOW	LOW	Chips	11.714	15.68	79.66	11.865	11.94	86.92
10	MID	MID	MID	Chips	11.985	0.26	99.74	12.306	0.14	99.80

ATK

VARIABLE	RESPONSE			
(NITRATING ACID MAKEUP FIXED)	ΑΙ	EAS	%N	
ACID \ CELLULOSE				
TEMP.				
TIME				
CHIPS OVER FIBERS				

Answer two Questions:

- 1. Is it feasible to make nitrocellulose from Kraft paper? Which pulp candidates look most promising?
- 2. Why do similar pulps nitrate so differently? What are the key cellulose characteristics influencing nitration?
 - •Hemicelluloses content
 - •Crystallinity
 - •Fiber wall thickness
 - •Tree species used
 - •Sheet Physical Properties

TWO MAJOR PULPING PROCESSES

A premier aerospace and defense company

SULFATE (KRAFT)

Basic digestion

•Universal process for recovery of cooking chemicals

Dominant process

•Cost ~ \$ - 0.20 / lb

•Use most types of trees

Acidic digestion

•Limited recovery of acid gas

SULFITE

•Mills diminishing

•Cost ~ \$baseline

•Use limited tree species

NITRATION QUALITY AND SOLUBILITY

A premier aerospace and defense company

% NITROGEN = 12.6 <u>+</u> 0.1% , ACETONE INSOLUBLES < 0.4%

SEVERAL OF THE SULFATE PULPS TESTED TO DATE APPEAR TO HAVE PROPERTIES THAT MEET MILITARY GRADE NC SPECS

FIBER QUALITY

WOOD PULP FIBERS

A premier aerospace and defense company

Resin (Extractable) - can survive the pulping process

Lignin – (binder) likely removed during the pulping process

Hemicelluloses (polysaccharides) – can survive pulping process

Alpha Cellulose – survives pulping process

CRYSTALLINITY % AND HEMICELLULOSE %

A premier aerospace and defense company

60% CRYSTALLINITY

5% CRYSTALLINITY

SULFITE PULPS	SULFATE PULPS
AVG HEMICELLULOSES = 5%	AVG HEMICELLULOSES = 19%

NEITHER CRYSTALLINITY OR HEMICELLULOSES CONTENT APPEAR TO BE MAJOR FACTORS IN THE NITRATABILITY OF CELLULOSE

CONFOCAL RAMAN MICROSCOPY

A premier aerospace and defense company

WE ARE COMPARING THE NITRATION LEVEL AT DIFFERENT DEPTHS WITHIN THE FIBER WALL FOR DIFFERENT PULP SAMPLES

•WE HAVE BEEN ABLE TO PERFORM NITRATION EXPERIMENTS AT THE LAB SCALE WHICH WOULD HAVE BEEN DIFFICULT, TIME CONSUMING, AND EXTREMELY EXPENSIVE AT THE PRODUCTION SCALE.

•LAB SCALE NITRATION HAS BEEN AN EFFECTIVE METHOD FOR TUNING NITRATION CONDITIONS FOR THE PRODUCTION SCALE PROCESS.

•LAB SCALE NITRATION IS HELPING ATK TO ASSESS FUTURE SOURCES OF CELLULOSE FOR NC PRODUCTION AS WELL AS ANSWERING SOME FUNDAMENTAL QUESTIONS .

We would like to thank PM Joint Services and ARDEC for funding the cellulose source study portion of this research.