DEFENCE

DÉFENSE

Revolutionary Insensitive, Green and Healthier Training Technology with Reduced Adverse Contamination Project (RIGHTTRAC Project)

> Patrick Brousseau, Energetic Materials Section DRDC Valcartier <u>Patrick.Brousseau@drdc-rddc.gc.ca</u> Tel: (418) 844-4000 x4274

2009 IMEMTS, Tucson, AZ, 13 May 2009

National Défense Defence nationale

Acknowlegments

Co-authors

- S. Brochu
- M. Brassard
- G. Ampleman
- S. Thiboutot
- F. Côté
- L.-S. Lussier
- E. Diaz
- V. Tanguay
- I. Poulin
- M. Beauchemin

- The team at General Dynamics OTS – Canada
- The team at the Biotechnology Research Institute (NRC Canada)
- The team at INRS-ETE
- The CRIQ
- DND/Director General Environment for funding

Outline

- RIGHTTRAC Objective and Concept
- Background
- Current Work
- Summary

- Technology Demonstration Project
 - 5 years
- Objective: To demonstrate
 - that green and IM munitions have better properties than current munitions.
 - that it is feasible to implement a solution that would ease the environmental pressures on the Canadian Forces ranges and training areas.

RIGHTTRAC Concept

- Scalable to other weapons

Avoid using toxic and carcinogenic ingredients in gun propellants

Green/IM propellant

of UXOs More reliable fuzing system with self destruct mechanism

Decrease the

production

Important Considerations

- Military readiness is imperative
- Most munitions fired in training areas
 - Around 95% before Afghanistan
- Increased personnel in Land Forces
- Increased foreign training

Prevention is essential to keep our (rather large) ranges and training areas in operational conditions

Defence R&D Canada • R&D pour la défense Canada

RIGHTTRAC Background

- > 15 years of R&D on environmental impacts of munitions (> 30 M\$ in research funds)
- Site characterization
 - Guidelines at http://www.em-guidelines.org/
- Complex environmental fate of explosives
- Mechanisms involved in the contamination
- Large international efforts with USA, Sweden, the Netherlands, U.K. and Australia

R&D Canada • R&D pour la défense Canada

RD

Background – Reduce the UXOs

- Probable sources of munitions residues in target areas
 - Low-order detonations of various ordnance items
 - UXO blow-in-place operations (BIPs)
 - Corrosion of surface and subsurface UXO
 - Rupture of UXO items from nearby detonations

Defence R&D Canada • R&D pour la défense Canada

Background – Reduce the UXOs

- 81-mm mortar cracked by the detonation of another incoming round
- One round can potentially contaminate a large amount of underground water in one rain season

Cracked shell

Production

Result

Simulated rain in columns

Background – Replace Gun Propellant Ingredients

- Significant amounts of propellant residues were detected at firing positions
 - Incomplete combustion of propellants
 - Open burning of excess propellant
- Some constituents may be toxic or carcinogenic
 - DNT, NG, phtalate derivatives, heavy metals, etc.

Background – Avoid RDX

- RDX
- One of the explosives that is used the most
- The most mobile through the soil profile
- Migrates to groundwater and contaminates surrounding areas
- It is considered rather toxic
- Our solution: HMX
 - Performs better than RDX (more expensive)
 - Almost a drop-in replacement in many applications

Background – Avoid RDX

Water solubility (mg/L)		
RDX	HMX	
42	5.0	

EPA Lifetime Health Advisory for Drinking Water (μg/L)		
RDX	HMX	
2	400	

- HMX is less soluble than RDX
- HMX is less toxic than RDX
- Factor of 1000 !
- Other energetic solids could also be appropriate but at this point in time, HMX is our best bet!

http://www.clu-in.org/char/technologies/exp.cfm http://www.epa.gov/waterscience/criteria/drinking/dwstandards.pdf

- Fuze
 - Development of a self-destruct capability to current artillery fuzing systems in case of a failure of the primary fuze
 - operator handling
 - soft impacts
 - age-related failures

- Implementation in an existing fuze
- Reduce the actual live fire dud rate from approximately 1-5% overall to less than 1%

- Gun Propellant
 - 4 candidates studied for performance
 - "Green" M1 propellant (DNT, DBP and DPA free)
 Green compliance = High; IM compliance = Low
 - Modified triple base propellant Green compliance = High; IM compliance = High
 - Modified HELOVA (HMX-based propellant with ETPE (Energetic ThermoPlastic Elastomer) and energetic plasticizer)
 Green compliance = Medium; IM compliance = Very High
 - Propellant combining nitrocellulose and ETPE
 Green compliance = High; IM compliance = Very High

Performance of the gun propellants

	Relative Force
Current M1 gun propellant	100
"Green" M1 propellant (DNT, DBP and DPA free)	112
Modified triple-base propellant	109
Modified HELOVA (HMX-based propellant with ETPE)	138
Propellant combining nitrocellulose and ETPE	81

- Explosive charge
 - Option 1. Green/IM Explosive (GIM)
 - Mix of melt-cast explosives with an Energetic Thermoplastic Elastomer (ETPE) patented by DRDC Valcartier
 - TNT/HMX/ETPE
 - Conventional melt-cast apparatus can be used without modifications
 - Recyclable products for remilitarization
 - Option 2. Plastic-Bonded Explosive (HMX-based)
 - High mechanical strength, good explosive properties, excellent chemical stability, insensitivity

Performance of the explosives

	Comp. B	GIM	PBX
		(TNT/HMX/ETPE)	(HMX/HTPB/DOA)
Density	1.69	1.69	1.62
(g/cm3)			
VoD	7885	7708	8197
(m/s)			
$P_{CJ} = \frac{1}{4} \ \rho D^2$	26.3	25.1	27.2
(GPa)			
Plate dent	0.782	0.799	-
(cm)			

Defence R&D Canada • R&D pour la défense Canada

- NOL Large Scale Gap Test
 - Comp. B 216 cards
 - GIM (TNT/HMX/ETPE) 182-184 cards
- DREV Gap Test
 - Comp. B 1.14 cm
 - PBX (HMX/HTPB/DOA)0.79 cm

RIGHTTRAC – IM Tests

- Bullet Impact on 105mm M1 projectiles
 - GIM (TNT/HMX/ETPE)
 - Burning and No reaction
 - PBX (HMX/HTPB/DOA)
 - Burning reaction

Defence R&D Canada • R&D pour la défense Canada

RIGHTTRAC – Small-Scale IM Tests

- Variable Confinement Cook-off Test (VCCT)
 - GIM (TNT/HMX/ETPE)

- 183 °C
- PBX (HMX/HTPB/DOA)
 - Overpressure
 - 203-207 °C

Toxicity studies (BRI-NRC)

- Formulations under study: GIM, PBX, gun propellants (2), reference formulations (M1 propellant and Comp B)
- Solubility and dissolution kinetics
- Abiotic degradability in water and in soil
- Transformation of DPA and NQ
- Transport in batch soil assays and in soil columns
- Ecotoxicity assays
 - Effects of the above munitions formulations, their individual components and the reference compounds in soil and sediment
- Bioavailability
 - For selected soil organisms receptors using chemical (extracts), toxicological (toxicity tests) in different soil conditions

Conclusions

- We are trying to demonstrate that green and IM munitions have better properties
- We are trying to ease the environmental pressures on the Canadian Forces ranges and training areas
- Our demonstrator is an artillery 105-mm round
- We are working on:
 - the fuze (to reach a near-zero dud rate)
 - the gun propellant (to eliminate potentially toxic components and incorporate IM ingredients)
 - the explosive (to replace RDX move to HMX, add a binder to reduce bioavailability and make it IM)
- Not many projects integrate both IM and green characteristics

DEFENCE

DÉFENSE

Ե