

TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.

Insensitive Munitions (IM) Testing: 25mm Target Practice, Discarding Sabot with Trace (TPDS-T), M910 Cartridge using ECL[®] Propellant

2

Insensitive Munitions (IM) Testing:

25mm Target Practice, Discarding Sabot with Trace (TPDS-T), M910 Cartridge using ECL[®] Propellant

Presented by: Mica Mc Ghee-Bey

Propulsion Manufacturing Technology & Producibility Branch Energetics Producibility & Manufacturing Technology Division RDECOM-ARDEC, Picatinny Arsenal, NJ

2009 Insensitive Munitions and Energetic Materials Technology Symposium Tucson, AZ

11 – 14 May 2009

Acknowledgment

- PEO AMMO
 - ➢ Seham Salazar

RDECOM – ARDEC

- ➢ Mr. Robert Ho
- Alan Cohen
- Co-Authors
 - ➢ RDECOM-ARDEC
 - Mr. Peter Bonnett
 - Mr. Chester Topolski
 - Mr. Bishara Elmasri
 - Nitrochemie Wimmis
 - Mr. Kurt Ryf
 - Mr. Beat Vogelsanger
 - Mr. Schädeli Ulrich
 - ATK Ammunition and Energetics
 - Ms. Kelly Brown Moran

TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.

CATKS

RHEINMETALL NITROCHEMIE

3

4

- Overview
- System Description
- Objective
- □ Why ECL?
- Test Results
 - Ballistics
 - Engineering IM
- Conclusion
- Planned Effort

5

- The U.S. Army is increasingly stressing the necessity of Insensitive Munitions (IM) compliance to provide a more cost effective, efficient means of transporting, storing and handling munitions
- PEO Ammunition strategy plan adopted an IM initiative to bring medium and large caliber munitions into IM compliance
- Existing medium and large caliber munitions do not meet Insensitive Munitions (IM) requirements
- Develop and investigate IM technologies (less sensitive propellant, cartridge case and ammo can venting concepts) to enhance munitions survivability when subjected to extreme environments and unplanned stimuli
 - → IM improvements over the existing designs to enhance the survivability of logistical and tactical combat systems
 - → Does not degrade the performance of the systems
 - → Minimize injury to personnel

Developed solutions will be demonstrated for IM enhancement using the 25mm APDS-T, M910 cartridge

The 25mm M910 Target Practice, Discarding Sabot with Trace (TPDS-T), M910 cartridge is a limited range munitions ballistically matched to the service cartridge, 25mm Armor Piercing Discarding Sabot with Tracer (APDS-T), M791 cartridge.

Length (max)	223 mm	
Weight	419 g	
Projectile Mass	98.8 g	
Propellant Weight	98.5 g	
Muzzle Velocity	1520 m/s	
Chamber Pressure @ Ambient	454 MPa	
Trace Time	4.0 sec	
Dispersion	0.40 x 0.40 mr	

□ Maximum range is less than 8000 meters

國國

The M910 is fired in lieu of the M791 from the M242 25mm autogun turret mounted on the M2/M3 Bradley Fighting Vehicle System during live fire gunner training and qualification

RDECOM

Objective

7

Develop and investigate IM technologies to enhance munitions (System Level) survivability when subjected to extreme environments and unplanned stimuli

✓ Less sensitive propellant to mitigate fragment impact deficiency

✓ Cartridge case venting

✓ Ammo can venting

ECL[®] Propellant Technology for Medium Caliber Applications

Main Benefits of new ECL[®] propellants compared to current nitroglycerine-base propellant solutions:

- Improved performance potential due to
 - ✓ High energy density and thermal conversion
 - ✓ Tunable force level, favorable thermodynamic features
- Improved dispersion, consistency and repeatability
 - $\checkmark\,$ improved accuracy and precision
- Direct incorporation of muzzle flash suppressants
 - ✓ eliminate added flash suppressant granules
- Higher cook-off resistance
- Less sensitve propellant Enhanced IM characteristics
 - ✓ No reaction to bullet impact
- NG-free (safety) / non-toxic "green" formulation
 - ✓ Avoidance of critical migration problems (plasticizers)
- > Much higher service life in A1 climatic zones due to:
 - \checkmark improved chemical and ballistic stability
 - \checkmark improved compatibility
- Provides equal to or better chemical and ballistic performance and stability when compared to currently fielded NG-containing propellants

ECL[®] Propellant Superior Chemical Stability

9

➢ 83% of Akardite in ECL present after 25 days at 71°C

More than 90% of DPA in ball powder depleted after 25 days aging at 71°C

Performance Test Results

10

Radford Summary of Results - M910 FM4201 at 97.5 grams					
Temp, °C	Pressure, Mpa	Pres, Std Dev	Velocity, m/s	Vel, Std Dev	
-54	342.9	15.3	1498.9	11.70	
21	382.5	7.6	1530.7	6.70	
71	388.3	6.9	1527.4	5.40	
Nitrochemie Summary of Results - M910 FM4201 @ 98.0 grams					
Nitroch	emie Summary	of Results - M9	10 FM4201 @	98.0 grams	
Nitroch Temp, °C	emie Summary Pressure, MPa	of Results - M9 Pres, Std Dev	10 FM4201 @ Velocity, m/s	98.0 grams Vel, Std Dev	
Nitroch Temp, °C -54	emie Summary Pressure, MPa 353.5	of Results - M9 Pres, Std Dev 13.6	10 FM4201 @ Velocity, m/s 1501	98.0 grams Vel, Std Dev 11	
Nitroch Temp, °C -54 21	emie Summary Pressure, MPa 353.5 379.6	of Results - M9 Pres, Std Dev 13.6 12.8	10 FM4201 @ : Velocity, m/s 1501 1528	98.0 grams Vel, Std Dev 11 11	

RDECOM)

嘲趣

Dispersion Test Results

11

Dispersion (distance = 50m) ECL FM 4201

Two type of penetrations:

- Projectile
- Pusher plate

Dispersion in Target Area (50m)

Muzzle Flash Signature

12

At 21°C

At 71°C

/ National Ouality

ward

2007 Award Recipient Engineering IM FI Test Test Setup

Fragment Impact (STANAG 4496)

Engineering IM FI Test Test Results

Shot 1: III

Shot 2: III-IV

ECL FM 4201 in 35mm steel cartridge

Engineering IM FI Test Test Results (Cont'd)

ECL FM 4201 in 35mm steel tube

RDECOM

嘲趣

Engineering IM SCO Test Test Setup

16

Slow Heating (STANAG 4382)

- Heating Rate: 3.3°C / h
- Assessment of Cook-Off Temperature and Reaction Type

Measured temperature during Slow Cook-off #1

Engineering IM SCO Test Test Setup (Cont'd)

Engineering IM SCO Test Test Results

Results IM engineering tests

Slow cook-off SCO, 1st run 200807, 06/17/2008 Propellant: FM 4201 in 35mm steel cartridge,

Processor Autoignition: 130.6°C Fragmentation: III

900 200807

Engineering IM SCO Test Test Results (Cont'd)

19

Results IM engineering tests

Slow cook-off SCO, 2nd run 200808, 06/19/2008 Propellant: FM 4201 in 35mm steel cartridge,

Autoignition: 131.3 °C Fragmentation: III

ECL Provides:

- Enhanced IM characteristics
- Provides equal to or better chemical and ballistic performance and stability when compared to currently fielded NG-containing propellants
- Improved ballistic performance with flat tunable temperature
- Increases stability / service life

2007 Award ecipient

- □ Finalize the design of:
 - cartridge case venting
 - ammo can (PA125) with vent windows
- □ L/A/P M910 cartridges with ECL propellant
- Conduct abbreviated ballistic performance tests per MIL-PRF-70775B
- □ Conduct full scale IM tests per MIL-STD-2105C
- Conduct abbreviated safety/environmental tests

21

22

