RESEARCH LABORATORY, LTD.

PRODUCTION OF AL MMC CASES FOR IM TESTING

Brian Gordon, Senior Program Manager Touchstone Research Laboratory

NDIA Insensitive Munitions and Energetic Materials Technology Symposium May 11 – 14, 2009

Approved for public release; distribution is unlimited.

Imagination, Invention, Innovation

Technology Overview Touchstone Research Laboratory Metal Prepreg Technology - Materials AI MMC Lamina Properties - AI MMC Process Background AI MMC Cylinder Production MMC Design Tool Calibration and Validation - Validation Testing IM and Static Firing Test Cylinders Conclusions and Future Work

Touchstone is an award-winning supplier of advanced materials, composites, materials testing, industrial problem solving, and outsourced R&D services to commercial and government customers.

Products

Premier Product Development Company in WV

CHSTONES

www.trl.com

Metal Prepreg Technology

Tape Width -0.25 to 1.50" Tape Thickness -0.007 to 0.020" Tubing -0.25" OD, 0.015" wall Angle -0.375" per leg, 90° angle Other sizes and shapes possible

Fiber and Matrix Typical Properties

Property	Units	Fiber	Matrix
Chemical Composition	wt. %	>99 Al ₂ O ₃	99.99 Al
Melting Point	°C	2000	660
	°F	3632	1220
Filament Diameter	μm in (10 ⁻⁴)	10-12 4-5	-
Crystal Phase		α - Al ₂ O ₃	-
Density	g/cm ³	3.9	2.7
	lb/in ³	0.141	0.098
Tensile Strength	MPa	3100	40-50
	ksi	450	6-7
Tensile Modulus	GPa	380	62
	Msi	55	9
Elongation	%	0.7-0.8	50-70
Thermal Expansion (100-1100°C)	ppm/°C	8.0	25
	ppm/°F	4.4	14

Metal Prepreg Tape Properties

	V _f	Density	Width	Thickness	F ₁ ^{tu}	E ₁ ^t	ε ₁ tu
		(lb/in ³)	(in)	(in)	(ksi)	(Msi)	(%)
Mean	0.50	0.119	0.377	0.0134	210	33	0.63

Material = AI_2O_3 fibers in pure AI Temperature = RT Environment = Air Direction = [0]

Standard Tape: Fiber volume of 50% Width of 0.5 inch Thickness of 0.015 inch

Properties similar to steel but with the weight of aluminum

Metal Prepreg Filament Winding

Analogous to PMC wet winding

- Based on MetPreg metal prepreg technology
- Spools of fiber are put on creel
- Tension is built into each tow
- Fiber bundle is dipped into the liquid matrix (molten aluminum) to impregnate
- Impregnated fiber bundle is laid onto the mandrel

Low-cost, flexible processing for MMCs

Casting vs. Filament Winding for MMCs

Molten Metal

Infiltrated Composite

Fiber Preform

- Wind preform
- Load mold
- Melt metal
- Infiltrate preform
- MMC filament winding is one step
 - Aluminum is kept molten in furnace
 - Fibers are infiltrated and wound in a continuous process
 - Mandrel is removed from finished part after winding

MMC Design Tool Model Calibration and Validation

Virginia Tech/Aerojet MMC Design Tool

urrent Units System: Engl	ish			Graphics Mode: Full Graphics			
	Materials	Composite	Point Stress	Tabular Results	Fastener Buck	ding	
Define Lamina			-	Define Laminate			
Matrix: Aluminum 7075	T62 (149 C)		Load Laminate Fr	om Database		
Reinforcement: Nextel 61	0 300ksi			none	Load		
Reinforcement Volume Fra	action: 0.42	(0 <vol. frac.<="" td=""><td><1)</td><td>Laminate Nam</td><td>e: private</td><td></td><td></td></vol.>	<1)	Laminate Nam	e: private		
Lamina Thickness: 0.012	5 inches	Define	2				
Defined Lamina:			Laminate Propert	ies			
Aluminum 7075 T62 (149 300ksi;	C) Reinfor	ced with 42. vo	1% Nextel 610	Number of Lan	nina: 18 Ma amina Thickenss a	ke Table) nd Vol. Frac.	
Lamina Properties				Lamina Defintio	n Table:		
View Lamina Properties: (• Parallel t	o Fiber Axis (D	irection 1)	Lamina Orientati	on * Vol Frac Th	ickness in Mic	d Point in
O Perpendicualr to Fiber	Axis (Dir.	2) 🔿 Shea	(Dir. 1.2)	1	89 0.46	0.011	-0.1005
o, ksi Comp	siteTensile	Eiber Dir		2	-22 0.35	0.013	-0.0885
300 F		, 1 1001 1011.	1	3	-89 0.46	0.011	-0.0765
			/	5	22 0.35	0.013	-0.0531
250 Composite	· .	/		6	-89 0.46	0.011	-0.0411
Matrix				7	89 0.46	0.011	-0.0297
200 Reinforcer	nent			8	-22 0.35	0.013	-0.0177
100	/			10	-89 0.46	0.011	-0.0057
100	/	/		Return or equivalent r Lamina orientation ra is parallel to the globa	required to change orient nge is ±90°. At 0°, the la al x-direction.	ationvalue. mina fiberdirection	
50				Lock and Ch	eck Laminate (Req	uired for Analys	is) ad when colorised
0.001 0.0	0.00	3 0.004	0.005 ¢	there is an orien	tation range error in one	or more of the orient	ation values.
Composite Properties Sun	nmary:			Load Composite	From Database		
E1: 28 Msi α1:	6.28 p	pm/*F v	12: 0.29	300 Int	300F	heal	
Comp. e at Mtx. Yld: 0.00	05 Co	mp. or at Mtx.)	Id: 76ald ksi	·		Luad	
0.00			ouro nat				

Calibrate to Experimental Values

- Calculated mean N_y was 7030 lb/in for 4-inch diameter hoop-only cylinders $N_y = P \times r$
- Model uses a non-linear point-stress analysis to determine lamina stresses
- Stress in the fiber direction for this load is 249 ksi
- This value was put back into the model and used to predict burst pressure for a 6-ply ±45/90/90/±45 lay-up

Prediction was within 4% of experimental value

Cylinder Laminate	Assumed Fiber Strength (ksi)	Predicted Burst Pressure (psi)	Actual Burst Pressure (psi)	% Diff
[90] ₄	249	2813	2812	0
±45/90/90/±45	249	3250	3393	-4

Production of Validation Test Cylinders

Case Design Using the MMC Design Tool

Design Complete Yes **Burst pressure is** Input initial case Calculate burst pressure approximately equal to or greater design estimate. using non-linear solver. than design requirement? No Add or subtract hoops or helical as needed based **Evaluate lamina-level** on lamina level burst results results. and burst pressure.

Iterative Case Design Decision Loop

Laminate Builder -Modify Lay-up

0.01		Lanis	ete Builder		
Number of 5 Define Lami	Lamina Types 2 na Types				
-	Name pig 1 pig 2	Oremator,1 W	Fran. Thorphonesis, mir 0.4 0.5	1 3	Bener
e lummer	ric Laminate Note	if selected only half of t	he laminate will be sho	en in the Define La	ninate table.
Number of L	Lamina 10 N	one must be an even nur	ther for symetric lamin	eta.	
1234		Name (m. 1 - orly 1 - orly 2 - orly 1 - orly 1 - orly 1	0-senses,* 23 -23 -23 -23 -23 25		
		((Gener)		

Nonlinear Solver -Calculate Burst Pressure

Lamina-level Results -Determine Modifications

Manufal Company Aper (Intel) Taking Results Farmer Leading Minis Maria Mar				·					Collimate a	the contract		- 20
Description De				Materials	Cartages	ha i Ao	e 31464	Takular Result	s Fallener	-Balting)		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	***	ier Renal	÷									
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		100	**	-	111	-			and the last		and the local	the Ma
		114 154 154 154 154 154 154 154 154 154	1.00 4.0 3.00 4.0 1.07 8.0 3.00 4.0 3.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00	14824 16824 16824 16824 16824 16824 16824 16824 16824 16824 16824 16824 16824 16824	4303 1714 1.004 1.	944, 954, 954, 954, 954, 954, 954, 954,	2222222222	104 104 104 104 104 104 104	1400, 3400, 3400, 3400, 3400, 3400, 3400, 3400, 3400,	0.440 0.540 0.417 0.480 0.480 0.480 0.480 0.480 0.480 0.480 0.480 0.480 0.480 0.480		417 417 417 417 417 417 417 417 417 417

Step #1 – Laminate Builder

lumber of La	mina Types: 2					
Define Lamina	a Types:					
ID	Name	Orientation, °	Vol. Frac.	Thickness, mm	Allow +/- Orien.	Delete
4	ply 1	25	0.4		1	
3	ply 2	90	0.5		1	

Define Laminate:

Number	ID	Name	Orientation, °	Insert	Delete
1	A	ply 1	25		
2	-A	-ply 1	-25		(contraction)
3	B	ply 2	90		
4	-A	-ply 1	-25		
5	A	ply 1	25		(11)

Cancel

Step #2 – Calculate Burst Pressure

urrent Units System: Metric					Graphics Mode: Ful	Graphics
	Materials	Composite	Point Stress	Tabular Results	Fastener Buckli	ng
Define Analysis Analysis Type: ④ Linear E	lastic or	🔘 Nonli	near Plastic	Graphical Res Strains in Lar	ults nina Principal Directi	ons:
Input: • Forces and Mom	ents or 🔘	Strains and	Curvatures	4	esteller di selle sere er	•
Analysis Variables						• •
Number of Loading Steps:	1	Lamina Divis	ions: 1	2		
Fractional Loading Start G	Jess: 0.1			8		•
				21		•
Analysis I/O	1.00		_	-2		•
ΔT for Residual Stress 0		Run Analys	is			•
Thermal Effects Incl	uded in Analys	sis I/O Table	Results	-4		•
Analysis I/O Table	Current	Loading Step	. 1		-0.004 -0.002 0	0.002 0.004
Input Value Ur	nits Outut	Value	Units	1	e	1 LT.
NX 1E7 N/1 NY 0. N/1 NZ 0. N/1	m εx : m εy · m εz ·	5.187 E-3 -1.713 E-3 -1.527 E-3		Stresses in La	amina Principal Direc	tions:
Nxy 0. N/r	т үхү	0.				
My 0. Nr	n/m кх (n/m ку (0.	1/m 1/m	4		
Mxy 0. Nr	n/m кxy (0.	1/m	2		. U
	1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 -			ε		
Laminate Bulk Properties	172 CD-	αx: 10	.6 ppm/°C	E 0		•
Laminate Bulk Properties Ex: 193. GPa Ey	. 173. GPa			_2		•
Laminate Bulk Properties Ex: 193. GPa Ey Gxy: 67.9 GPa vxy	0.33	αy: 9.8	35 ppm/°C	-	-	1
Laminate Bulk Properties Ex: 193. GPa Ey Gxy: 67.9 GPa vxy Gyz: 60.3 GPa vyz	0.33 0.29	αy: 9.8 αz: 4.1	35 ppm/°C	4		

Step #3 – Review Lamina Level Results

000 MMC Design Tool File Tools Help \$ **Full Graphics** Current Units System: Metric Graphics Mode: Materials Composite Point Stress **Tabular Results** Fastener Buckling **Tabular Results** Stress Units: MPa L Orien., " €1 €2 ¥12 σ1 σ2 т12 Max Norm o Fbr Fail Frac Fbr von Mises of Mtx Yield Frac Mtx 25.0 3.95 E-3 -4.81 E-4 -5.29 E-3 950. 138. -306. 1600. 0.682 656. 61.7 1 2 -25.0 -4.81 E-4 5.29 E-3 950. 138. 306. 1600. 0.682 656. 61.7 3.95 E-3 90.0 -194. 840. 0 840. 0.357 948. 89.3 3 -1.71 E-3 5.19 E-3 0. 306. 4 -25.0 3.95 E-3 -4.81 E-4 5.29 E-3 950. 138. 1600. 0.682 656. 61.7 5 25.0 3.95 E-3 -4.81 E-4 -5.29 E-3 950. 138. -306. 1600. 0.682 656. 61.7 25.0 -4.81 E-4 -5.29 E-3 950. 138. -306. 0.682 656. 61.7 6 3.95 E-3 1600. 7 -25.0 3.95 E-3 -4.81 E-4 5.29 E-3 950. 138. 306. 1600. 0.682 656. 61.7 8 948. 89.3 90.0 -1.71 E-3 5.19 E-3 0. -194. 840. 0 840. 0.357 9 -25.0 3.95 E-3 -4.81 E-4 5.29 E-3 950. 138. 306. 1600. 0.682 656. 61.7 10 25.0 3.95 E-3 -4.81 E-4 -5.29 E-3 950. 138. -306. 1600. 0.682 656. 61.7

* Thermal effects are always included in the Tabualr Results

Pattern Development

🗗 Helix Wind [He	(19.8]		
Part Parameters:		Wind Parameters:	
Fiber Start Position (Z1)	20.000	Fiber Angle (Deg.)	45.000
Fiber End Position (Z2)	0.200	Fiber Bandwidth	0.500
Mandrel Diameter	4.000	End Dwell (Deg.)	120.000
Turnaround Range	1.000	Path File Threshold	(Deg) 2
Metric Units (mm)	f(x) Calculate	Close	

Wind Patter	n Selection	Menu				?	\times
Base Path Stat	istics:						
Number of F Mandrel Ro Rotation in	Patterns Gener itation in Currer Turnaround Ra	ated: ht Path: ange:			24 1489.05 234.59°	5*	~
Circuits /	Pattern Tupe	Adjus Angle	ted Width	Turn / [Dome Bight	Natural P Deviatio	ath
Coverage Fa	attein Type	Angle	wium	Len	riight	Deviatio	
17 6	6 Lag	45.28°	0.520	236.9*	236.9*	0.97%	~
17 4	t Lead	45.68°	0.516	240.2°	240.2*	2.39%	
	7 Lead	45.96*	0.485	242.6°	242.6*	3.42%	
	/ Lag	46.071	0.513	243.51	243.51	3.82%	-
10 F	o Lag 5 Lood	46.46	0.009	245.3	245.3	0.24%	
10 C	5 Leau	46.70 46.85°	0.473	240.3	240.3	6.66%	
17 2	2 Lead	40.00	0.500	253.6°	253.6°	8.08%	
17 2	2 Lag	47.60°	0.498	256.9°	256.9°	9.51%	~
	Star	t on Righ	it End of	Mandre]		

💵 Sor

- Pattern files are created for each ply or layer
- Hoop ply patterns require the input of the mandrel diameter, pattern length, and fiber bandwidth
- Helical layer patterns require these same inputs plus the fiber angle, parameters that deal with the reversal of the fiber direction on each end, and choosing the circuits/coverage and circuits/pattern

Preview of the Winding Patterns

Check for pattern

coverage

Check for coverage and smoothness of turns on ends

Combining Individual Patterns Into Chain Pattern

Calculate

Close

Individual patterns are linked together in a chain wind to ensure smooth transitions between segments The pattern is "filtered" to level out any acceleration spikes in the machine motion

Validation Test Results

Cyl 1	Cyl 2
28-Feb-08	19-Jan-08
~77	~77
0.220	0.233
0.404	0.385
3331	3277
39.8	39.2
20.0	5.0
0.33	1.14
19.9	19.6
30.0	7.0
0.06	0.26
	Cyl 1 28-Feb-08 ~77 0.220 0.404 3331 39.8 20.0 0.33 19.9 30.0 0.06

- Wall thickness of nearly ¼" with a lay-up of 90/±45/ ±45/90/ ±45/ ±45/90
- Hoop fiber failure achieved
- Consistent properties with the exception of some strain data anomalies

Production of IM and Static Fire Test Cylinders

AI MMC Cylinder Production

- MMC filament winding process has been further demonstrated through the production of nine 6-inch OD x 15-inch long cylinders with ~0.25-inch wall thickness
- MMC Design Tool and burst test results were successfully used to design cylinders for IM and static fire testing
- Tests completed thus far indicate that AI MMC motor cases will be better than steel cases against BI and FI
- AI MMC cases may be better than steel in FCO as well, but the first test was not conclusive and another test is being planned
- The response to SCO should be no worse than current designs, the most difficult threat to mitigate, and there is the potential for incorporating unique closure designs specifically geared towards SCO mitigation

Future Work

- Currently implementing a 3rd axis on the filament winding machine which should allow cylinders with thinner walls to have higher burst pressures
- Additional scale-up to make cylinders with lengths up to six feet is being planned
- A method for NDI/NDE will need to be developed
- End closure processing and attachment point designs will also need to be developed

Visit Touchstone Research Laboratory on the Web www.trl.com www.metpreg.com E-mail: metpreginfo.com