

IM Response for Army Engineering Charges filled with FPX V40

2009 IM/EM Technical Symposium May 11th-14th 2009 Tucson, Arizona

Hannu Hytti, M.Sc. (Eng.) Forcit Defence

IM Response for Army Engineering Charges filled with FPX V40

- Background
- Qualification of FPX V40 according to STANAG 4170
- IM testing
 - BI, SH, FH, SR, FI (mod)
- CBAM calculation for Forcit DFC 2010 System and comparison with conventional non-IM-system

Background

- Replacement of infantry mines and old army engineering equipment in FDF
- Forcit In-house development of IM products
- A new FPX development to replace e.g. hexotol in army engineering charges
- FPX V40 suitable for e.g. Directed Fragmentation Charges and Mine Clearance Charges

Background

- Forcit DFC 2010 is based on the FPX V40 main charge and FPX R1 booster charge
- For the best performance of the product a suitable combination of bubble- and shock energy was developed
- In-house development included field testing and 3 D-modelling of the charge

General information FPX V40

FPX V40	
Туре:	General purpose, army engineering charges
Components:	RS-RDX, AP, AI, binder
Density:	1,72
Velocity of detonation	6600 m/s
UN test series 7	Pass (except EIDS Gap)
STANAG qualified	Yes
IM-tested	Yes

Qualification of FPX V40 according to STANAG 4170 and the effect of ageing (1/2)

TEST	FRESH	3 MONTHS	6 MONTHS	Note	
Impact sensitivity, BAM (cm) STANAG 4489	39	41	58		
Friction sensitivity (N) STANAG 4487	252	168	160		
LSGT (NOL) (mm/kbar)	31 / 41	31 / 41	31 / 41		
Deflagration point (° C) STANAG 4491 B1	211	213	213		
DSC (° C) STANAG 4515	227,3	226,3	223,5		
Thermal expansion coefficient α (1/° C) STANAG 4525	9,4E-05	10,3E-05	10,7E-05		
Slow Cook Off (° C) STANAG 4491 Annex C-3	168/explosion	172/expl.	172/expl.	Acc. UN EIDS SCO pass	
Fast Cook Off (° C) STANAG 4491 FCO- tube	Deflagration				
Koenen test (mm)	No det./2 mm				
 Sensitivity properties and thermal stability as well as mechanical 					

properties not significantly changed during ageing

Qualification of FPX V40 according to STANAG 4170 and the effect of ageing (2/2)

- Slow Cook Off –reaction
 - According to STANAG 4491 Annex C : explosion
 - According to UN EIDS Slow Cook Off : pass

IM testing: Bullet Impact STANAG 4241 ed 2 (1/2)

IM testing: Bullet Impact STANAG 4241 ed 2 (2/2)

- Impact on the front side of the charge and direct on the booster
- Reaction level : Type V, no reaction

IM testing: Slow Heating STANAG 4382 ed 2

 Reaction level : Type V, burning

IM testing: Fast Heating STANAG 4240 ed 2

 Reaction level : Type V, burning

IM testing: Sympathetic Reaction STANAG 4396 ed 2

Reaction level : Type V-IV, burningdeflagration

Sensitivity to Fragment Impact

- Another DFC was fired towards the acceptor charge with differen distances between the charges (80 cm – 0 cm)
- Reaction level : Type V, burning

CBAM calculation

- Cost Benefit Analysis Model based on the IM testing of the Forcit DFC 2010
- Calculated for 25 years lifecycle and compared to a conventional DFC
- The cost for Forcit DFC 2010 was 15 % of the total lifecycle cost of the conventional DFC.

Summary

- The replacement of infantry mines and obsolete army engineering charges have given cause to a development of new army engineering charges with IM properties
- FPX V40 and FPX R1 are suitable explosive fills e.g. army engineering charges and give excellent performance and IM properties.
- There is a huge potential of storaging cost savings with Forcit DFC 2010 if the potential would be fully utilized (UN Test series 7 renewal)

Acknowledgements

Finnish Defence Forces Test Firing Centre

Finnish Defence Forces Technical Research Center

Forcit Defence team