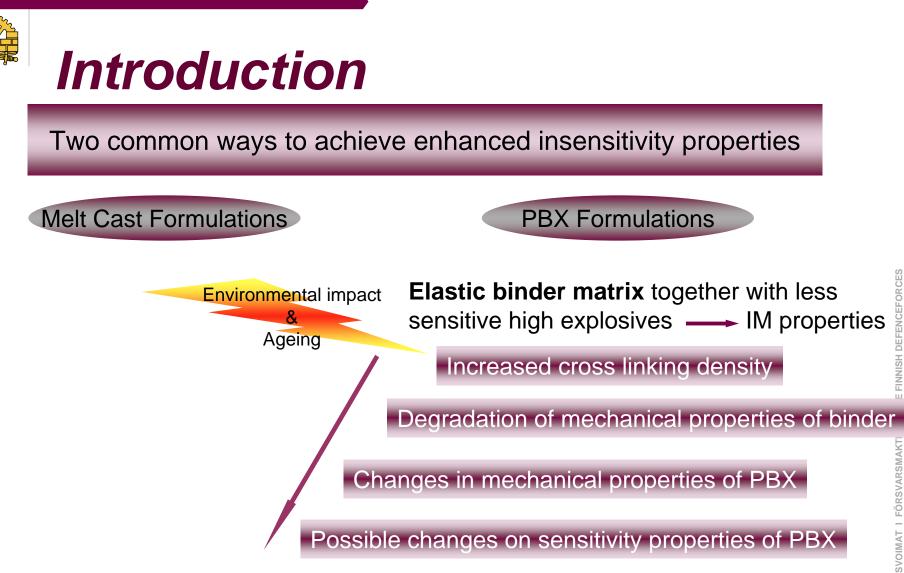


The Centre of Excellence in Protection, Safety and Information Security *Performance through Research* **PVTT**


Accelerated ageing study of low sensitivity PBX formulation -FPX V40

IM & EM Symposium, May 11.-14. 2009 Tucson Arizona

To predict these changes occurring during the life cycle, artificial ageing study is included in the qualification test program

PVTT- M.Sc. Mari-Ella Sairiala

The Centre of Excellence in **Protection, Safety and Information Security** Performance through Research

2.6.2009

PUOLUSTUSVOIMAT I FÖRSVARSMA

Sample material – FPX V40

- FPX V40...
 - ... is produced by Forcit Defence
 - ... is isocyanate cured HTPB based PBX
 - ...has shown very good insensitivity properties
 - ... is a multipurpose explosive
 - ... is used for example in army engineering charges (charges fulfill the IM requirements)

The Centre of Excellence in Protection, Safety and Information Security *Performance through Research*

2

THE FINNISH DEFENCEFORCES

FÖRSVARSMAKTEN

UOLUSTUSVOIMAT

Ageing

- STANAG 4581
 - At 60 °C for 3 and 6 months
 - According to van'T Hoffs rule this represents storage for
 - 10 years at 20 °C or
 - 20 years at 10 °C
 - Samples were wrapped in plastic foil during ageing
 - Outer surfaces were removed before machining the test specimens

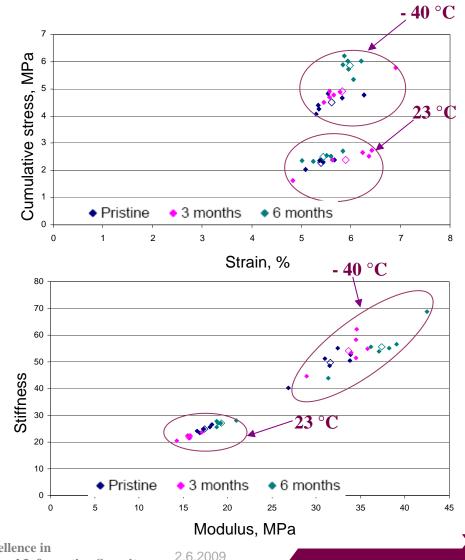
Testing

- Pristine and aged samples were tested
- Two test temperatures
 + 23 °C
 - - 40 °C
- Mechanical test were done with Lloyd LR5k Plus
 - Uniaxial tensile test
 - Compression test
 - Stress relaxations test
- Other tests were included in qualification procedure

The Centre of Excellence in Protection, Safety and Information Security *Performance through Research*

Results – Tensile test

• Low temperature behavior


- Stress, modulus and even strain increased -> cumulative stress is increased
- Tensile properties were maintained also after ageing
- Ageing effect

After 3 months

 Stress and modulus, thus stiffness was decreased (23 °C)

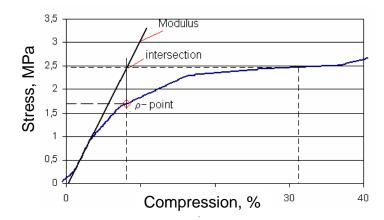
After 6 months

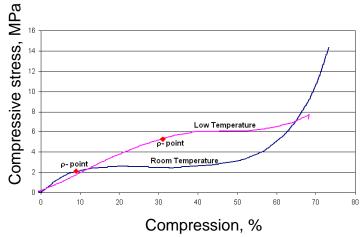
 Stress, modulus and stiffness were increased and strain remained or even increased -> higher cumulative stress and thus tougher material

The Centre of Excellence in Protection, Safety and Information Security *Performance through Research*

4

Results – Compression test


• Low temperature behavior

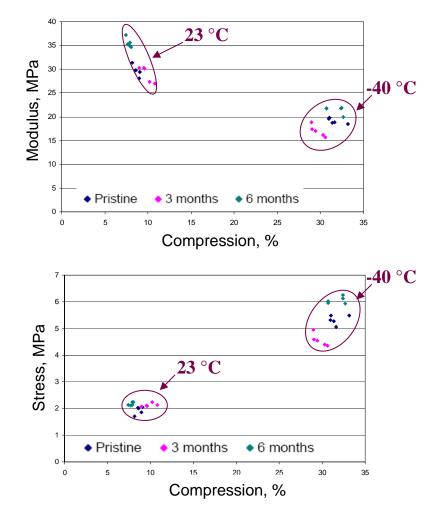

- Remarkable different compression behavior
 - higher compressions
 - stress level is increased
 - linear part lasts longer
 - determined ρ-point moved towards higher compressions
- Toughening behavior was seen in test specimens after compression test – samples were not fractured
- Behavior was consistent with tensile test observations

At 23 °C tested samples

PVTT- M.Sc. Mari-Ella Sairiala

The Centre of Excellence in Protection, Safety and Information Security *Performance through Research*

Results – Compression test (continues)

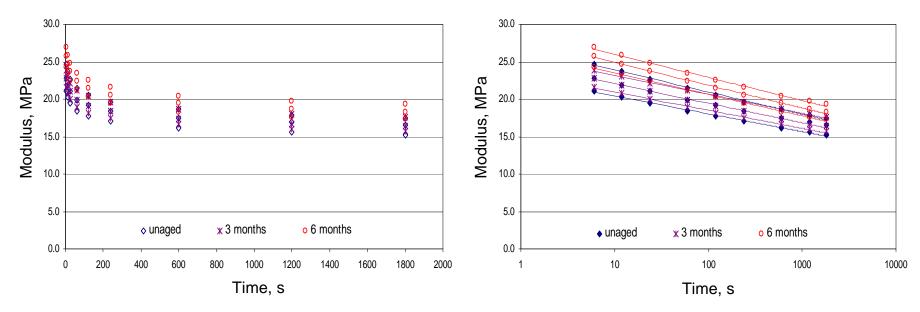

• Ageing effect

After 3 months

- Decreased modulus
- Slight loose in compression capability was observed at low temperature

After 6 months

- Increased modulus
- No significant change on compression values at room temperature
- Some increase in compression capability at low temperature
- Thought behavior at low temperatures was maintained also after ageing
- ✓ Test results were congruent with tensile test results



PVTT- M.Sc. Mari-Ella Sairiala

The Centre of Excellence in Protection, Safety and Information Security *Performance through Research*

Results – Relaxation test

- Modulus difference between 6-1800 seconds was determined
 - No significant changes can be observed
 - Ageing has a slight effect on relaxation tendency
 - Relaxation tendency was lower samples aged for 3 months
- ✓ Results are congruent with other tests

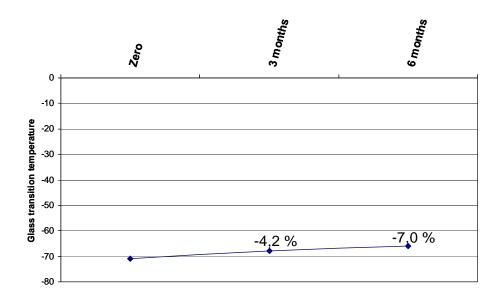
The Centre of Excellence in Protection, Safety and Information Security *Performance through Research*

- Behavior of 3 months aged samples were unexpected
 - Loss of modulus
 - Decreased stress values and stiffness
 - Increased strain values
 - Similar behavior was observed in all conducted tests

Explanation

- Result of recovery or stress relaxation process occurred during short period ageing at temperature which is close to the curing temperature
 - At the curing temperature the internal stresses are at minimum level
 - Relaxation or recovery processes compensates the changes caused by ageing

- Ageing has an effect on mechanical properties although these effects are quite minor
- During the ageing the sample explosive became tougher and stiffer without losing its elasticity
 - indicating some degree increase in cross linking density but only to such degree that it does not affect strain values.
- Tendency to relaxation is highest for most aged samples
 - during the initial stretching phase the stiffened structure hinders the movements of molecules and thus relaxation of the polymer
 - chain relaxation occurs slowly in constant strain phase as a function of time.



Correlations to other tests

• Glass Transition Temperature

- Glass transition temperature (T_g) describes the behavior of the binder and its structure also
 - T_g was determined with DMA according to STANAG 4515
- Ageing causes the shift of T_g values
- For aged samples the glass transition occurs at higher temperatures
 - smaller mobility of molecules due to increased cross linking

T_g results support the conclusions made based on mechanical tests

The Centre of Excellence in Protection, Safety and Information Security *Performance through Research*

Effect on insensitivity properties

• Test program showed that ageing at 60 °C for 6 months has an slight effect on mechanical properties of sample explosives.

Even so:

- No changes in shock sensitivity (LSGT)
- No changes in thermal sensitivity
 - deflagration temperature maintained
 - decomposition temperature maintained
 - slow cook off temperature maintained

Test	Pristine	3 months	6 months
LSGT	31 mm 41 kbar	31 mm 41 kbar	31 mm 41 kbar
Deflagration Temperature	211 °C	213 °C	213 °C
Decomposition Temperature (DSC)	227 °C	226 °C	224 °C
SCO	176 °C	172 °C	172 °C

PVTT- M.Sc. Mari-Ella Sairiala

The Centre of Excellence in Protection, Safety and Information Security *Performance through Research*

- ✓ Minor changes in mechanical properties was seen
- ✓ No evidence of change in sensitivity properties
- Test program however did not take into account the impact sensitivity properties which should be tested in future

The Centre of Excellence in Protection, Safety and Information Security *Performance through Research*

Acknowledgements

o Explosives Technology staff at PINT o M.Sc Matti Muilu o Senior Mechanics: Jukka Nenonen Kari Reinola o Forcit Defence

The Centre of Excellence in Protection, Safety and Information Security *Performance through Research*