

2009 JSPE - Saft

Advanced Lithium Power Sources – Real World Experience 5 May 2009

Real World Experience – Key Topics

Saft Background

- Improved Target Acquisition System
 - Lithium Battery Box
- Battery Life
 - Expectations vs. Experience
 - Life Limiting Factors
 - Fielded Lessons
 - Expecting the Unexpected
- New Developments

Saft Global Manufacturing Network

 SDD is a division of Saft America, Inc.
 - a subsidiary of the Saft Group, headquartered in Bagnolet, France.

Saft is a multinational company specializing in the manufacture and development of high tech batteries for industry.

Space and Defense Division, Cockeysville, MD

Dedicated to manufacturing advanced Li-ion cells and batteries for Space and Defense applications

	· •pu					
Type of Cell	VL4V	VL12V	VL22V	VL34P	VL52E	
Type of Cell	Very High Power			High Power	High Energy	
Dimension						
Diameter (mm)	34	47	54	54	54	
Case length (mm)	156	152	174	174	200	
Mass (kg)	0.33	0.64	0.96	0.94	0.99	
Capacity (Ah)	5.5	12	22	33	52 ULIL	V
Specific Energy (Wh/kg)	50	74	84	120	200	
Energy Density (Wh/L)	138	175	200	280	430	
Power (W/kg)	2/00	(000	(250	 1000	NI / A	
18 sec pulse at 50% SOC	3600	6000	6350	1900	N/A	
Continuous Discharge Rate	60C	100C	100C	15C	1C	
	2					Saft

Saft - 2009 Joint Service Power Expo - 5 May 2004

SAFT

Improved Target Acquisition System (ITAS)

- Saft supplies the battery for Raytheon's Improved Target Acquisition System used with the TOW Missile.
- Battery powers weapon sight/ targeting unit (ITAS)
- More than 1500 batteries have been fielded for combat use. Systems in Iraq and Afghanistan (TRL-9).
- Raytheon has recognized Saft with the Supplier Excellence Award three years in a row due to our performance on this program.

sar

ITAS – Lithium Battery Box

- Production began in 2004 the first production for a large Lithium-ion system.
- Improvements over former AgO/Zn technology:
 - Increased Operational Readiness
 - No activation charge needed
 - Charging time < 6 hours</p>
 - Operating time > 16 hours
 - Total life > 3-5 years
 - Reduced service cost
- Only required field maintenance is periodic charging
- Battery specs:
 - 28 V, > 80 Ah
 - 65 lbs
 - Energy = 2.5 kWh


ITAS cell pack: 8S, 2P configuration

ITAS - High Energy Cell Design

526
RectarDate
1. 1. 1.
3.6 V Li-ion
ron
te Capability @ 25°C from 4.1V t
te Capability @ 25°C from 4.1V

SaFT

Characteristic	Units	Value
Mass	kg	1.0
Volume	L	0.48
Charge Voltage	V	4.1
Capacity (4.1V-2.5V, 25°C, C/7)	Ah	52
Specific Energy (4.1V-2.5V, 25°C, C/10)	Wh/kg	185
Energy Density (4.1V-2.5V, 25°C, C/10)	Wh/L	385
Peak Discharge Current (RT, Complete)	А	52
1kHz AC Impedance	mΩ	0.8
Terminal-to-Terminal Length	mm	208
Diameter	mm	54

VL 52 E

ITAS - Battery

Robust

- Shock
- Vibration
- UN Transportation
- Waterproof to 36" but floats
- EMI, EMC, NBC qualified
 Designed for one man lift
 Ergonomic Connector access
 Simple user interface
- Designed for 36" drop cold
 - 32 drops for qual no leaks
- Made to fit the space in HMMWV behind passenger seat

ITAS - Flange Panel Front Controls

- Two Mil spec connectors with connector covers
- BIT lights (BAT, ELEC)
 - BAT = Cell Pack
 - ELEC = Electronics
- Display Intensity Control
 - On (low) / On (high) / Off
- Charge Indicator
- State of Charge LEDs
- Power Switch integral 35A Circuit Breaker
- Override Switch

Battery Life

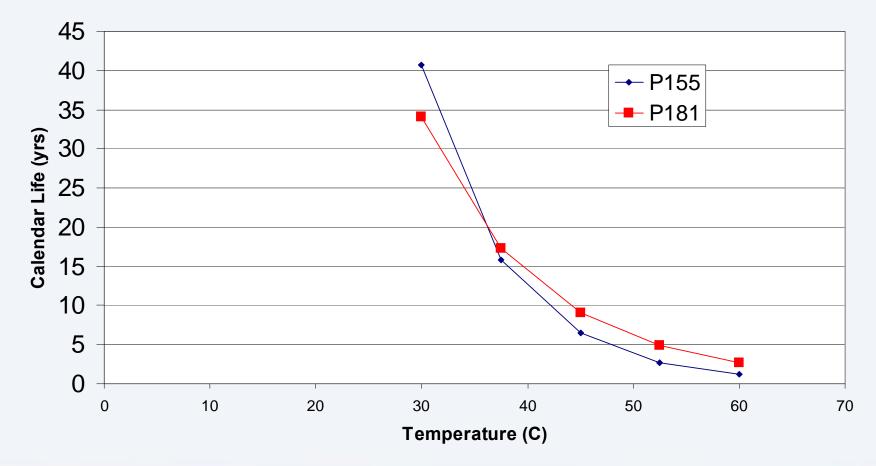
Battery life based on few major factors

- Fundamental Electrochemistry Specific chemistry gives life potential
- Calendar Time / Temperature Lower temperature gives longer life
- Discharge Depth and Rate Shallower / slower cycles give longer life
- Methods to determine life take time cycles and calendar time
 - Two data sources Lab / Field

Battery Life - Definitions

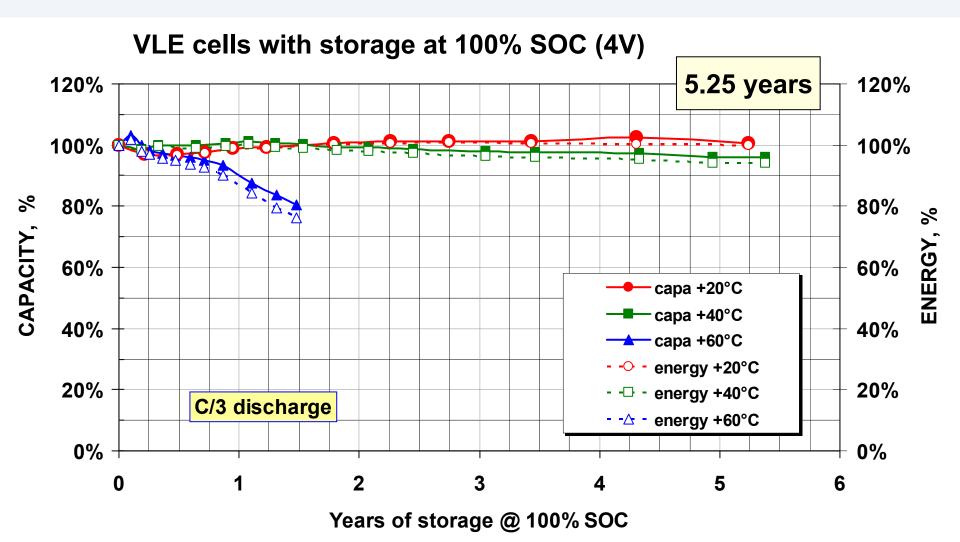
Battery life defined for given application

- Typically when battery delivers 80% of new capacity
- Lithium-ion General Life / Technology
 - No memory effect as in some other chemistries
 - Does have low rate self discharge
 - Self discharge will vary from cell to cell
 - Overcharge is chief systems concern



Battery Life - Saft Lithium Ion (NCA)

Saft

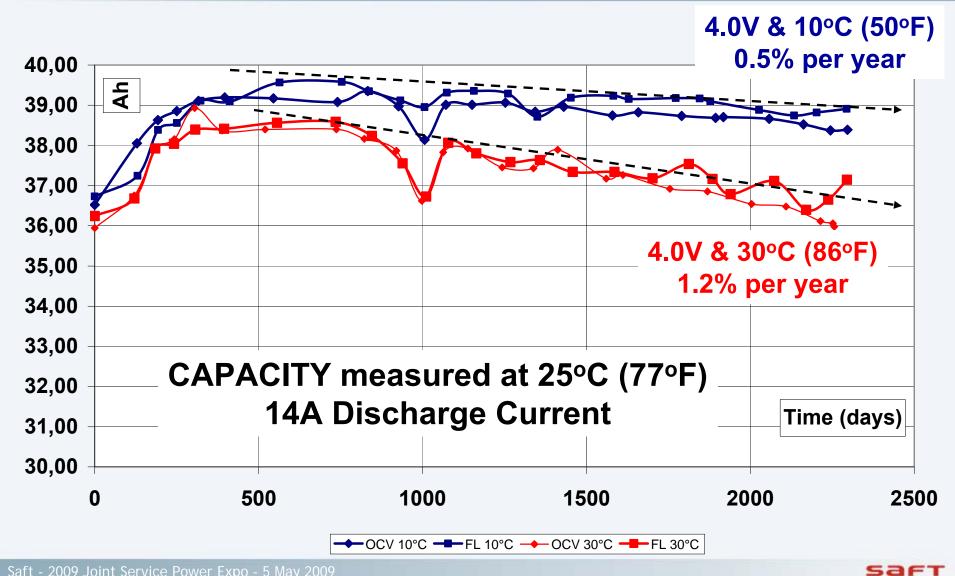


Calendar Life Comparison

Battery Life - Calendar Stability at Temperatures

Saft

Saft - 2009 Joint Service Power Expo - 5 May 2009


Battery Life - VES140 Cell for Space

- Space program calendar life testing of Li-ion cells
 - Cells were very similar to ITAS cells
- Actual > 6 years of storage performed
- Storage done at several different voltages and two different temperatures 10°C and 30°C on float and on Open Circuit Voltage
- Capacity and impedance measured periodically

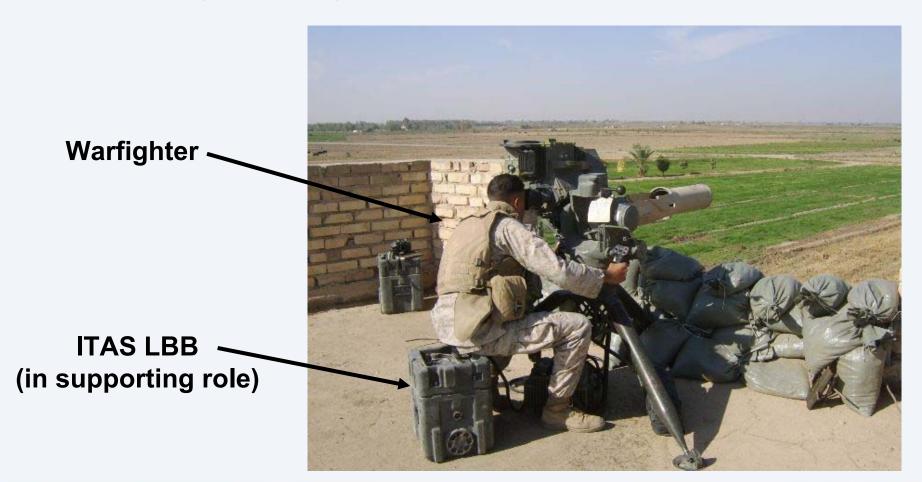
Storage Condition	Capacity Loss per Year	Remaining Runtime after 10 Years (20 hours at start)
	Based on 6.8 years testing	Best Estimate Projection
4.0V and 10°C (50°F)	0.5%	95% / 19 hours
4.0V and 30°C (86°F)	1.2%	88% / 17.6 hours

Battery Life - VES140 Cell for Space

Battery Life - Fielded Batteries

- Batteries SN0064 and SN0187 tested at Saft after 3+ Years uncontrolled use (transit, operational use, etc)
- Battery Capacities were 90.7 Amp Hours and 93.3 Amp Hours
 - Battery test
 - ITAS simulation discharge at room temperature (C/18 rate)
 - Capacities were above nameplate capacity for new units
 - Original Cell Capacities were checked
 - Manufacturing data from July and December 2004.
 - Capacities were roughly 45 Amp Hours at medium discharge rate (C/3 rate) - Equivalent to 90 Amp Hours in a battery
- Very low capacity loss after 3+ years uncontrolled use Roughly 3% in July 2004 unit / No loss in December 2004 unit

Battery Life – Limiting Factors


Electrochemistry – Not the limiting factor?

- Life of more than 4 years (and counting) demonstrated
- Connectors Mate / Unmate Cycles
 - Expected number of cycles for MIL-38999
- Interior Components Foam / Adhesives
 - Degrade over time
 - Physical Abuse
 - Case damage
 - Lack of charging

Fielded Lessons – Alternate Uses

Supporting the Warfighter!

Fielded Lessons – Systems Function

ITAS LBB contains complete system functionality

- Overcharge Protection (Primary Function)
 - Multiple Layers
 - Fully independent circuits
- Cell Balancing
- Communication with maintainer
- Lesson: Overcharge protection has been a complete success
 - No failure ever!

Once circuit is in place, what other features can be enabled?

Fielded Lessons – Systems Function

SAFT

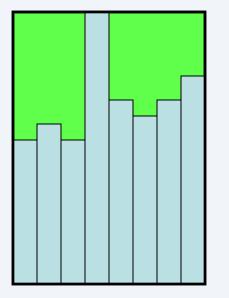
SITAS CTC Tool v2.0 - 1 File Settings About	1/29/2007 - (CKY03	13)		
Battery Status Battery Mode Normal Battery Voltage Battery Voltage 0.0 V FET States Discharge FET Open	Power Source External Cell VSum 31.9 V Charge FET Open	SOC 100%	Cell Information Balancing Cell 1: 3.994 V] Cell 2: 3.994 V] Cell 3: 3.995 V] Cell 4: 3.994 V] Cell 5: 3.994 V] Cell 6: 3.994 V] Cell 7: 3.994 V] Cell 7: 3.994 V] Cell 8: 3.991 V] Cell 8: 3.991 V]	VMC Information FCS Cable: Disconnected Charger Cable: Connected Charging Status: Charging Charging Capable: No Charger On: On Charger Disable: True Charger Status: No Fault View Signals Misc
Temperature 25°C Built-In-Test Status BAT Light: 0 ELEC Light: 0		Remaining 80.00 Ah	Cell # Max: 3.995 V 3 Min: 3.990 V 6 Diff: 5 mV Avg: 3.993 V	Voltage Ref: 2.497 V Heater Sense: 0.000 V RS 422 Power: 5.000 V Est. To Balance: @ 29mV / Day 00 Days 00 Hrs 00 Mins
LBB Messages (11/29/2007 10:03:29 AM) (11/29/2007 10:03:29 AM)		to LBB		LBB Information Clock: 11/29/2007 10:06:39 AM Manufactured: 11/28/2007 SW Version: 2.8 SW Date: 3/23/2004
COM1 Open TxCount: 230	RxCou	unt: 1588	Logging State: Stopped	

Fielded Lessons – Logistic Challenges

Battery Charging

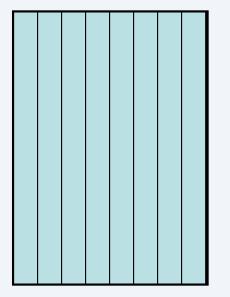
- Only maintenance needed!
- Once every 6 months
 - Baseline recommendation
 - Consult Raytheon FSR's for best practice
- Lesson: Lead cause of battery return
- Cell Balance
 - Handled by LBB system
 - Lesson: Challenge for battery availability
- Solution Training and Setting Expectations
 - Article in "The Preventive Maintenance Monthly" (August 2008)
 - Sharing current information

Fielded Lessons - Logistics - Charging


- Batteries self discharge over time and ensuring a maintenance charge is applied remains a challenge.
- Largest return issue (by far)
- Education of user has helped
- Continued storage at low SOC can lead to irreversible cell damage and require cell replacement

Fielded Lessons - Logistics - Balancing

- Differences in self-discharge rate lead to voltage differences in the cell packs
- Normal self-discharge in cells from 0.2 to 2.0 mV/day
- Balancing function during charging corrects for unequal selfdischarge – No user intervention needed.
 - Balancing rate during charge is ~30 mV / day
 - Takes time to bring a pack back into alignment


Fielded Lessons - Logistics - Balancing

- Delta Voltage: Difference between max / min cells
- Charging must stop when max cell reaches upper limit (4.1 V)
- Other cells not fully charged

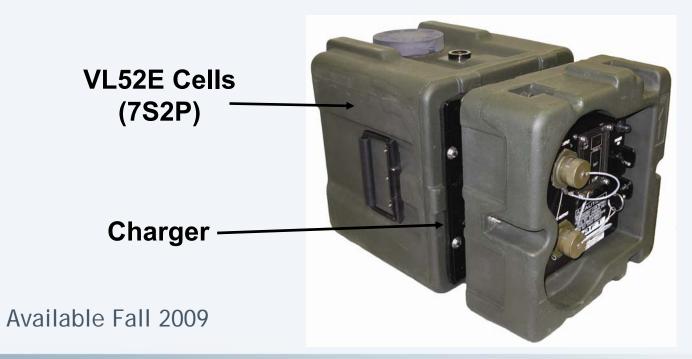
(*green* = wasted capacity)

Fielded Lessons - Logistics - Balancing

- Balancing selectively discharges high cells to match lower ones
- Charging is allowed to continue
- Cells charged more uniformly
- Balancing capability is a key feature of the ITAS LBB. Allowing time for the balancing to work will improve performance.

Fielded Lessons - Battle Damage

Enemy Fire


- At least three batteries in separate incidents
- Batteries smoked, vented
- Not the end of the world!
- Overwhelming Damage
 - Bridge collapsed onto one battery

New Developments

Advanced Lithium Power Source

- Development from the ITAS LBB Performance Heritage
- On board AC and DC charging Convenient Charging
- Lower Voltage range
- Wider variety of applications Simple integration

Conclusions

- Saft's High Energy Technology is ideal for use in deployed situations as a high reliability power source.
 - The robust cell design allows for high charge and discharge power, low heat generation, and excellent cold temperature performance, all with extended cycle and calendar life.
- Saft's System approach and integrated control electronics provide an unsurpassed total solution for today's field demands
 - 100% performance of charging safety system has been a key success.
 - Large Format Lithium-ion batteries are a success in today's battlefield!

Conclusions (continued)

- Saft would like to thank US Army Close Combat Weapons Systems (CCWS) and Raytheon for their continued support and team based approach in providing the best possible power solutions for the US Military.
- Saft would also like to thank our customers for continued feedback on battery system performance. This insight allows us to continually update and improve our energy storage solutions.

29

Questions?

Contact Information

Jim Hess Director of Defense Sales jim.hess@saftbatteries.com Phone: 410-568-6460

SAFT America Space and Defense Division 107 Beaver Court Cockeysville, MD 21030

