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Penn State University
Applied Research LabApplied Research Lab

• Established by U.S. Navy in 1945
• Designated a University Affiliated Research Center 

(UARC) in 1988
• Largest research unit within PSU with more than 1,200 

faculty and staff 
• Approximately $150M in research funding in FY2008
• Role: serve as trusted agent for DoD
• Mission: Research, Tech Transfer, Education
• University Resources: College of Engineering, PA 

Transportation Institute, Materials Research Lab



Penn State ARL
ARL is primarily a science and technology-
based laboratory with leadership in the 
following core competencies:following core competencies:
• Acoustics
• Guidance and controlGuidance and control
• Power / energy systems
• Hydrodynamics,  hydroacoustics, y y , y ,

propulsor design 
• Materials and manufacturing
• Navigation and GPS
• Communications and information
• Systems Engineering

VIRGINIA CLASS

• Systems Engineering
• Graduate education



Power System “Needs” for 
Hea Tactical VehiclesHeavy Tactical Vehicles

• Improved reliability – power whenever it’s neededp y p

• More power available during ‘normal operation’ – i.e., power for air 
conditioning, C4ISR, CREW, IED countermeasures, lighting

• More power / longer operation during ‘silent watch’

• Reliable engine startingReliable engine starting

• Reduced logistics burden  

L lif l t• Lower lifecycle costs

• Simplified maintenance and diagnostics

Battery graveyard in Kuwait



Primary Power Management 
System (PPMS)

• Common vehicle power & energy architecture

System (PPMS)

• Configurable for specific missions
• Split energy storage system

Ult it f hi l t ti- Ultracapacitor for vehicle starting
- Deep cycle batteries for silent watch

• Hydraulically-driven generator for high power drive &Hydraulically driven generator for high power drive & 
accessory loads
• Planetary Gear Startery
• Integrated power management & control
• Integrated CBM+g
• VCS monitoring and control



Split Energy Storage System 
Design BenefitsDesign Benefits

• Separate the two different power requirements
– High power for engine starting (more CCAs) 
– High energy for silent watch (deep cycle application)

N b i h b i i d f b h f i• No battery exists that can be optimized for both functions
– Use appropriate technology for each requirement

Operate here forOperate here for 
silent watch

Operate here for 
engine starting



Split Energy Storage System 
Design BenefitsDesign Benefits

• Utilize ultracapacitors for engine starting
– Ultracaps rated for 100K’s of cycles
– More reliable starting than batteries (even w/ battery 

monitoring)monitoring)

• Use the appropriate battery technology for specific silent 
watch requirementswatch requirements
– One vehicle configuration regardless of battery chemistry
– Lead acid => inexpensive, sufficient energy for most missionsp gy
– Li Ion, NiMH => for missions that require longer or higher 

power silent watch
C ld i f l ll h b il bl i f– Could integrate fuel cells as they become available in future



Energy Storage for Silent Watch

Silent Watch Runtime vs. FTTS Requirements
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Energy Storage for Silent Watch
Total Life Cycle Costs
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Deep Cycle Battery Testing
Battery test station
• 4 electronic load banks and power supplies
• LabVIEW software-controlled

4 i d d l d fil• Run 4 independent load profiles 
simultaneously
• Equipped with a freezer and high temp 
chamber for testing at environmental extremes

Cycle Life for 100% DoD
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Currently cycling 6T-style flooded lead 
acid batteries from Axion Power



Energy Storage for                   
Engine StartingEngine Starting

ESMA 28V UltracapESMA 28V Ultracap 
(provided by KBI)

• Peak power plotted comparable or better than that of four 6T• Peak power plotted comparable or better than that of four 6T 
lead acid batteries
• Less affected by low temp’s (compared to batteries)
• Easy to accurately measure ultracap SOC
• Ability to recharge rapidly



Energy for Engine Start
some n mbers… some numbers

• Energy required to crank 8V92T @ 50oF ~ 6KJ
• Energy stored in ESMA 28V Ultracap ~ 120KJ
• Energy stored in Hawker Armasafe 4-pack ~ 17,300KJgy
• An engine crank @ 50oF requires:

– 5.0% of total energy in ESMA ultracap
– 0.035% of the total energy in Hawker 4-pack

• Question: If stored energy is > 6KJ, will vehicle start?
• Answer:       Yes, if sufficient power can be delivered 



Energy for Engine Start
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Ultracapacitor
• ESMA Cap ~ 120KJ
• Energy to start ~ 6KJ

P l h ld t

Batteries
• Battery’s ability to deliver 
power decreases with SOC

Al ff t d b /h lth• Per energy calcs, should get ~ 
20 starts

• Also affected by age/health



Energy for Engine Start

Battery SOC vs. Power
• Battery’s ability to deliver power is reduced as SOC falls, and as y y p
batteries age
• Below 25% SOC may not be able to crank engine

- But battery pack still has much energy remaining
• Solution: use batteries to charge ultracap using DC/DC converter, 
ultracap delivers power needed to start vehicleultracap delivers power needed to start vehicle

DC/DC 
Converter

To 
Starter



PPMS Architecture



HILTEC Test Bench

Hardware-in-the-Loop Test & Evaluation Center
Purpose: simulate engine starting under a wide range of conditions in order to 

l t f f i t t d t d ievaluate performance of engine starters and energy storage devices

• Electric motors for• Electric motors for 
assist/oppose torque
• Matlab Simulink 
models can be used to 
emulate different size 
enginesengines



Hydraulic Power Generation

• Concept: install hydraulically-driven generator on 
vehicle for supplying high power loads
– In place of large belt-driven alternators

• Benefits:
– Alternator output is temp dependent, performance spec’d at 

72F, but typically degrades at higher temps
– Hydraulics allow flexibility of placement can move alternatorHydraulics allow flexibility of placement, can move alternator 

out of engine compartment 
– Not tied to engine speed (taken off PTO)

L APU bili– Low cost APU capability
– Reliable operation, minimal maintenance required



Alternator Testbed

Purpose:
• Test alternators for performance vs speed, temperatureTest alternators for performance vs speed, temperature



Alternator Testbed

P k F11 019 HU SV T

• 10 gallon reservoir
• Air-cooled heat exchanger with ¼ hp motor

Parker F11-019-HU-SV-T  
Hydraulic Motor
• 30kW mechanical  power @ 
8000rpm in spec’d systemp p y

Eaton 70360 Hydraulic  Pump
• Manually-Controlled Displacement
• 48kW continuous hydraulic power @ 3600rpm



Alternator Direct Drive Testing   

• Conducted prior to hydraulics implementationp y p
• Alternator enclosed in heat chamber (70-250F)
• 400A DC load banks 
• Alternators tested: Prestolite SF252, AuraGen TANGEN G8500YC,Alternators tested: Prestolite SF252, AuraGen TANGEN G8500YC,       
EMP Power 450
• Yet to be tested: Prestolite C-3544-1 (baseline), Niehoff 1602-1



Prestolite C-3544-1
140 amps (per spec)

engine @ 
idleidle 

(700rpm)



AuraGen TANGEN G8500YC

engine @engine @ 
idle 

(700rpm)

• Dual 8500W alternators with inverter charger system
• 500A @ 28VDC, 2x33A @ 240VAC
• Curve to right is DC power onlyCu ve o g s C powe o y
• Little degradation in power output at high temps



Prestolite SF252

• 300A @ 28VDC
• Brushless, water-cooled AC 
generator, integrated rectification

engine @ 
idle 

(700rpm)ge e o , eg ed ec c o
• Need to test at 212F coolant temp 



EMP Power 450

engine @engine @ 
idle 

(700rpm)

• 450A @ 28VDC
• Brushless, air-cooled alternator



CBM and On-Vehicle Sensor 
IntegrationIntegration

CBM applied to existing vehicle data sources
• Open data sources: J1939, J1708
• Proprietary data sources: ADM diagnostic messages, ADM operational 
parameters

CBM applied to new sensors
- Engine oil condition analysis - Fuel level
- Engine oil level - Fuel filter condition
- Transmission oil level - Air filter condition
- Coolant sensor level - Tire pressure monitoring
- Hydraulic system - Brake wear monitoring

CBM applied to power system components
- Alternator V, I, T
- Battery V, I, T, SOC, SOH
- Ultracap V, I, T, SOC



Vehicle Control System

Hardware agnostic 

• Software developed using Microsoft XNA Game Studio
• VCS tied to vehicle CANbus backbone
• Control of PPMS, display system operational parameters, display 
CBM updates, etc



Conclusions

• Penn State modeling /evaluation capabilities:
– Hardware-in-the-Loop for simulated engine startingHardware in the Loop for simulated engine starting
– Battery Test Station for cycle life & performance evaluation
– Alternator Test Station for power vs. speed, temperature 

characterization

• PPMS and CBM+ solutions being implemented on 
A2 kHEMTT A2 Wrecker

• Technologies available today can provide a means to 
t t d d dmeet present day power demands

• System architecture will allow for rapid implementation 
of future technology improvementsof future technology improvements



Questions / Comments

• For more info, contact:
- Chris Rogan, Penn State ARL

109@ dcmr109@psu.edu
(814)865-7337

- Brian Murphy, Penn State ARL
bjm206@psu.edu
(814)865-9036

- John Johnson, PM-HTV, TACOMJohn Johnson, PM HTV, TACOM
john.w.johnson@us.army.mil
(586)574-6924

Acknowledgement:
This work was supported by the US Army TACOM, PM Heavy Tactical Vehicles, 
SFAE-CSS-TV-H, Contract Number N00024-02-D-6604

Thanks to following companies who have donated equipment for this program:
AuraGen, Prestolite, EMP, Axion Power, Deka, KoldBan Inc, Nippon, Korry


