

A Review and Analysis of Maturity Assessment Approaches for Improved Defense Acquisition Decision Support

2009 NDIA 12th Annual Systems Engineering Conference San Diego, CA October 26-29, 2009

Nazanin Azizian

Presentation Overview

- 1. Introduction
- 2. GAO Major DoD Program Assessments
- 3. Knowledge Gaps
 - A. Basis
 - B. Consequences
 - C. How to Close
- 4. Congressional Policy
- 5. Technology Maturity
 - A. Technology Readiness Assessment (TRA)
 - B. Technology Readiness Level (TRL)
 - C. TRL Limitations
- 6. Introduction to Other Tech Maturity Assessment Methods
- 7. SWOT (Strength, Weakness, Threat, Opportunity) Analysis
- 8. Conclusions & Recommendations

Introduction

The Department of Defense (DoD) acquisition programs have a long history of experiencing various forms of risk

DoD is experiencing consequences of risk in the form of:

- Cost overruns
- Late deliveries
- Failure to meet performance requirements
- Program delays
- Program cancellations
- Failure to deliver promised capabilities

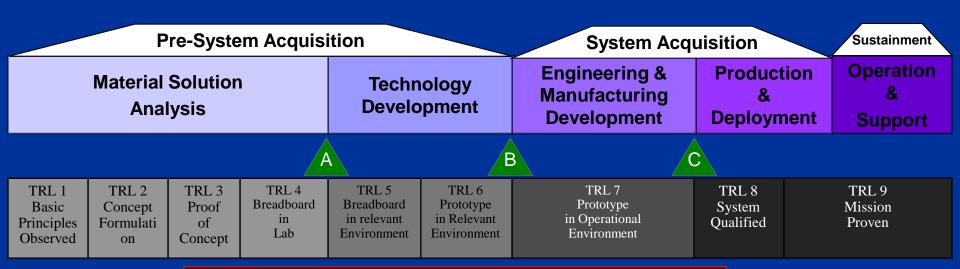
Underlying causes of risk:

- Unrealistic performance expectations
- Unrealistic baseline estimates for cost or schedule
- Immature technologies
- Evolving requirements
- Changes in procurement quantities;
- Funding instability;

GAO Assessments and Findings

GAO assessments of Acquisition Programs concluded that risk in poorly performing DoD programs result from not possessing the knowledge required to achieve a successful design at key points during development.

Knowledge gaps result in DoD programs moving forward without sufficiently:

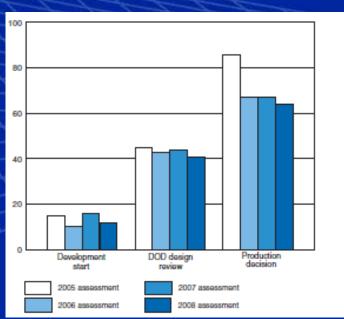

- Maturing the new technologies,
- stabilizing the design, or
- maturing the manufacturing processes

Multiple assessments (2000-2008) of the DoD acquisition portfolio concluded a strong correlation between delayed knowledge points and poor performance.

TRL Relationship to System Acquisition Milestones

DoD requires maturity assessment certification as entrance criteria for milestones B & C

Milestone B = TRL 6
Milestone C = TRL 7


Relationship to Technology Readiness Levels

2008 GAO Assessment of 72 Weapons Programs

- 12% began system development with fully mature critical technologies
- 4% had demonstrated design stability before entering system demonstration phase
- No program had fully matured their production processes before entering production

1 1 1 1		1 1	7 1
Analysis of DOD Major Defense Acquisition Program			
\	Fiscal year 2008		
	Fiscal Year		
	2000 Portfolio	2005 Portfolio	2007 Portfolio
Number of Programs	75	91	95
Total Planned Commitments	\$790 Billion	\$1.5 Trillion	\$1.6 Trillion
Commitments Outstanding	\$380 Billion	\$887 Billion	\$858 Billion
7		Portfolio Perform	ance
Change to total RDT&E costs			
from first estimate	27%	33%	40%
Change in total acquisition cost			
from first estimate	6%	18%	26%
Estimated total acquisition cost			
growth	\$42 Billion	\$202 Billion	\$295 Billion
Share of programs with 25			
percent or more increase in			
program acquisition unit cost	37%	44%	44%
Average schedule delay in			
delivering initial capabilities	16 Months	17 Months	21 Months

Percentage of Programs Achieving Technology Maturity at Key Junctures

Basis of Knowledge Gaps

Why do DoD programs enter various phases of acquisition and product development with knowledge gaps?

- Organizational drive for better, faster, cheaper warfare technologies
- Program risk management strategies allow for inherent risk
- Program financial methods punish delays in program start date

Why do DoD knowledge gaps result in design, technology, and production risks?

- Risk is typically underestimated by organizational leaders
- Programs take risk to maintain production start date to avoid political risks of delay (loss of funding)

System development challenges:

- ✓ Increasingly complex Systems
- ✓ Increased data demand requirements
- ✓ Operating in a net-centric environment
- ✓ System-of-System centric
- √ Rapid development cycle
- ✓ Rapid technology obsolescence
- ✓ Evolving/untradeable requirements

How to Close the Knowledge Gap

1999 - GAO) stated in report that

"Program managers' ability to reject immature technologies is hampered by (1) untradeable requirements that force acceptance of technologies despite their immaturity and (2) reliance on tools that fail to alert the managers of the high risks that would prompt such a rejection." GAO/NSIAD-99-162

2003 - DoDI 5000.02 (2003), para 3.7.2.2 required the inspection of technology maturity by stating

"Objective assessment of technology maturity and risk shall be a routine aspect of DoD acquisition."

2006 – Congressional legislation (Title 10, section)

 Technology maturity must be assessed and certified to be adequate prior to MS B&C

THE UNDER SECRETARY OF DEFENSE 3010 DEFENSE PENTAGON WASHINGTON, DC 20301-3010

MAY 0 2 2006

MEMORANDUM FOR: SEE DISTRIBUTION

SUBJECT: Implementation of Section 2366a of Title 10, Unites States Code

Section 2366a of title 10, United States Code, as emacted by section 801 of the National Defense Authorization Act for Fiscal Year 2006 (Pub. L. No. 109-163), requires the Milestone Decision Authority (MDA) for a Major Defense Acquisition Program (MDAP) to make certain certifications prior to Milestone B or Key Decision Point B approach.

To fulfill this requirement, the MDA, without the authority to delegate, shall sign a memorandum, subject "Program Certification," prior to signing the Acquisition Decision Memorandum (ADM). This certification memorandum shall be prepared "for the record," and shall include the statements in the attachment, without modification. If the program is initiated at a later decision point, e.g., Milestone C, a similar memorandum shall be prepared, as a matter of policy, consistent with the intent of the statute. The certification memorandum shall be submitted to the congressional defense committees, as defined at 10 U. S.C. 101_(16), with the first Selected Acquisition Report for the program after completion of the certification.

The MDA may waive one or more of components (1) through (6) of the required certification (specifically, one or more of paragraphs (1) through (6) in the attachment) for an MDAP if the MDA determines that but for such a waiver, the Department would be unable to meet critical national security objectives. The MBA shall submit the waiver, the determination, and reasons for the determination, in writing, to the congressional defense committees within 30 days of authorizing the waiver. The MDA may not delegate this waiver authority.

In addition to the certification memorandum, the MDA will include the following statement in the ADM: "I have reviewed the program and have made the certifications required, or executed a waiver as authorized, by section 2366a of title 10, United States Code."

This policy shall apply to MDAPs approved by me and to MDAPs managed by Department of Defense Component Acquisition Executives or the Assistant Secretary of Defense for Networks and Information Integration. This requirement went into effect January 6, 2006, and shall be reflected in the next revision to Department of Defense Instruction 5000.2.

Attachment: As stated

Technology Readiness Assessment (TRA)

A TRA is a systematic, metrics-based process and accompanying report

The TRA assesses the Maturity of Critical Technology Elements

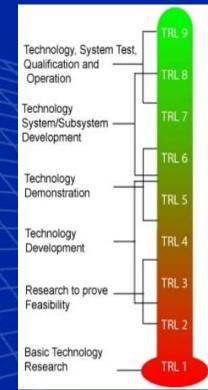
Critical Technology Elements (CTEs) are...

- The system depends on this element to meet operational requirements
- The element or its application is either new or novel.
- Element poses major technological risk during detailed design or demonstration

DoD standard tool for performing TRAs is Technology Readiness Level (TRL) metric

Technology Readiness Level (TRL)

What is TRL?


- Technology Readiness Level (TRL) is a 9 tier metric that systematically assess the maturity of a technology with respect to a particular use
- Pioneered by NASA in 1980's and adopted by the DoD in 2001

Purpose of TRL

- Provides a common language for understanding the developmental status of a technology to date
- Indicates the development maturity of a technology at a particular point in time

TRL is not for suitability

 Does not indicate that the technology is right for the job or that application of the technology will result in successful development of the system

Actual application of the technology in its final form and under mission conditions, such as those encountered in operational test and evaluation.

Technology has been proven to work in its final form and under expected conditions. In almost all cases, this TRL represents the end of true system development.

Prototype near, or at, planned operational system. Represents a major step up from TRL 6, requiring demonstration of an actual system prototype in an operational environment such as an aircraft vehicle, or space.

Representative model or prototype system, which is well beyond that of TRL 5, is tested in a relevant environment. Represents a major step up in a technology's demonstrated readiness.

Fidelity of breadboard technology increases significantly. The basic technological components are integrated with reasonably realistic supporting elements so it can be tested in a significant engagement.

Basic technological components are integrated to establish that they will work together. This is relatively "low fidelity" compared to the eventual system. Examples include integration of "ad hoc" hardware in the laboratory.

Active research and development is initiated. This includes analytical studies and laboratory studies to physically validate analytical predictions of separate elements of the technology.

Invention begins. Once basic principles are observed, practical applications can be invented. Applications are speculative and there may be no proof or detailed analysis to support the assumptions.

Lowest level of technology readiness. Scientific research begins to be translated into applied research and development.

Milestone B = TRL 6
Milestone C = TRL 7

TRL Limitations

- Subjective Assessment there exist no formal guideline of implementing TRLs; the TRL value is assigned to technology by a technology developer who may be biased; the definitions of each TRL level is prone to broad interpretation
- Not focused on system-to-system integration TRLs focus on a component of a technology and when infusing the particular component with other in a larger scale, imperative integration concerns come forth
- Lacking in definition of terminology the definitions of each TRL level can be ambiguous and reliant on an individual's interpretation
- Combines many dimensions of technology readiness into one metric
- Lacks accuracy and precision
- Conveys the status of technology readiness on a single scale at a particular point in time – does not foretell the possibility and difficulty of further maturing technology to higher TRL levels.

Rational for Other Methods

TRLs are insufficient because they do not take into account many of DoD's system development needs

- large quantity manufacturing
- Integration and rapid obsolescence
- Increased system-of-system centricity

To offset some of these issues, other models, tools, and methods have been developed

GOAL - introduce objectivity and address the overlooked facets of technology maturity that have been omitted by the TRL

Qualitative Techniques

4	Tool	Description
4	Manufacturing	The MRL is a 10 level scale used to define current level of manufacturing maturity, identify maturity
4	Readiness Level	shortfalls and associated risks, and provide the basis
7	(MRL)	of manufacturing maturation and risk management (Cundiff 2003).
1	Integration Readiness Level (IRL)	The IRL is a 9 level scale intended to systematically measure the maturity, compatibility, and readiness of interfaces between various technologies and consistently compare interface maturity between multiple integration points. Further, it provides a means to reduce the uncertainty involved in maturing and integrating a technology into a system (Gove
T		2007).
7	TRL for non- system technologies	Expansion of the TRL definitions to account for non- system technologies such as processes, methods, algorithms, and architectures (Graettinger et al 2002).
	TRL for Software	Expansion of the TRL metric to incorporate other attributes specific to software development (DoD TRA Deskbook 2005).
1	Technology Readiness Transfer Level (TRRL)	The TRRL is a 9 level scale describing the progress of technology transfer to a new application. It expands and modifies the TRL definitions to address the transfer to space technology into non-space system (Holt 2007).

	Tool	Description
01111	Missile Defense Agency Checklist	A tailored verstion of the TRL metric specifically in support of hardware maturity through the development life-cycle of the product (Mahafza 2005).
1 1 1 1 1 1 1 1 1 1	Moorhouses Risk Versus TRL Metric	A 9 level metric mapping risk progression analogous to technology maturity progression. The TRL descriptions are tailored specifically toward UAV (Moorehouse 2002).
	Advanced Degree of Difficulty (AD2)	Leveraging the concept of RD3, the AD2 augments TRLs by assessing the difficulty of advancing a technology from its current level to a desired level on a 9 tier scale (Bilbro 2007).
A A AND AND A STATE OF THE PARTY OF THE PART	Research and Development Degree of Difficulty (RD3)	The RD3 is a 5 level scale intended to supplement the TRL by conveying the degree of difficulty involved in proceeding from the current TRL state to desired level, with 5 being very difficult and 1 being least difficult to mature the technology (Mankins 1998).

Quantitative Techniques

Tool	Description
System Readiness Level (SRL)	The SRL is a normalized matrix of pair-wise comparisons of TRLs and IRL of a system. It is a quantitative method providing insight into system maturity as a product of IRL x TRL (Sauser et al. 2006, 2007, 2008).
SRL Max	The SRL Max is a quantitative mathematical model aiming to maximize the SRL under constraint resources. The objective of the SRLmax is the achievement of the highest possible SRL based on the availability of resources such as cost and schedule (Ramirez-Marquez et al. 2009).
Technology Readiness and Risk Assessment (TRRA)	TRRA is a quantitative risk model that incorporates TRLs, the degree of difficulty (RD3) of moving a technology from one TRL to another, and Technology Need Value (TNV). The TRRA expands the concept of the risk matrix by integrating "probability of failure" on the y-axis and "consequence of failure" on the x-axis (Mankins 2007).
Integrated Technology Analysis Methodology (ITAM)	ITAM is a quantitative mathematical model that integrates various system metrics to calculate the cumulative maturity of a system based on the readiness of its constituent technologies. The system metrics include TRLs, delta TRL, R&D Degree of Difficulty (R&D3), and Technology Need Value (TND) (Mankins 2002).

Tool	Description
TRL for Non- Developmental Item (NDI) Software	A mathematical method to assess the maturity of Non- Developmental Item (NDI) software using orthogonal metrics in combination with a pair-wise comparison matrix to examine two equivalent technologies that are candidate for insertion into a system. Incorporate other attributes such as requirement satisfaction, environment fidelity, criticality, product availability, and product maturity (Smith
Technology Insertion (TI) Metric	TI involves the integration of various metrics that deal with insertion of technology and subsystems into a current system in order to develop an "enhanced system." The TI Metric is a high level metric computed from sub-metrics or dimensions intended to evaluate the risk and feasibility of technology insertion from a subsystem and a system level (Dowling and Pardo 2005).
TRL Schedule Risk Curve	This is a quantitative model that does not communicate the maturity of technology at a certain point in time but instead leverages the TRLs metric to identify the appropriate schedule margins associated with each TRL level in order to metigate schedule slipps (Dubos et al. 2007).

Automated Techniques

	Tool	Description
F	Technology Readiness Level (TRL) Calculator	Microsoft excel based tool that enables the
1		application of the TRL definitions to technology
		development. The calculator computes a TRL level
Z		based on the answers to a series of questions by the
	(TRE) Calculator	user and displays the output graphically (Nolte
V		2004).
		Microsoft excel based tool that enables the
	Manufacturing	application of the MRL definitions to technology
7	Readiness Level	development. Computes the MRL level based on
4	(MRL) Calculator	answers to a series of questions in various threads
		related to manufacturing readiness.
/		TPMM is a technology-development activity model,
\rightarrow		partitioned into phases that are gate qualified using
	Technology	the TRLs. The model defines each TRL as a stage
Ü	Program	and establishes exit criteria (gate) for each stage of
†	Management	TRL. Each TRL stage has an associated checklist
٠	Model (TPMM)	of activities that must be achieved before
	- Violet (11 Wilvi)	succeeding to the next stage. The TPMM is
Ļ		comprised of seven technology development phases
-)		(SMDTC 2006).
-	UK MoD Systrem Readiness Level	Captures key outputs from then inelevels of product
		development depicted by the Systems Engineering V- model in an excel-based tool. These outputs are confined
5		and tracked in a matrix. Each output is evaluated on a 9
٨		level SRL scale
25. N		(http://www.ams.mod.uk/aofcontent/tactical/techman/con
		tent/srl_whatarethey.htm)

SWOT

STRENGTHS

- 1) Assessment of maturity of a particular technology at a
- 2) Brings together stakeholders to evaluate maturity of component technologies and can bring forth discussion about other important factors
- 3) Can be performed fast and iteratively
- 4) Does not require working knowledge of complex

OPPORTUNITIES

- 1) Flexible and agile to allow tailoring for various systems
- 2) Adapt to new acquisitions
- 3) Achieve accuracy and precision via more concrete and succinct exit criteria
- 4) Expansion and integration with other system metrics

WEAKNESSES

-) Subjective
- 2) Over simplifies many factors of maturity into one value
- 3) Does not assess maturity of a complex system that comprised of multiple technologies
- 4) Blurs many factors of technology readiness into one

· Relatively Objective

- 5) Does n
- technologi
- 6) Does n
- incorporat 7) Does n
- developm 8) Relies

1) Defini

2) Too ge

3) Wrong

4) System

impact c

· Integrates multiple system metrics SWOT

techniques

- · Assessment of maturity of a particular technology at a point in time
- Tangible metric to suport decision making

STRENGTHS

· Relatively precise compared to qualitative

· Not subject to personal interpretation

WEAKNESSES

Qualitative Tools

- Can be too complex and difficult to apply by the average technologyist and acquisitionist
- More time consuming then performing qualitative analysis
- · Can be system specific be tailored to different of
- · Difficult to peform iterat

SWOT

· Make general enough to meet majority of DoD maturity assessment needs

OPPORTUNITIES

- · New acquisitions
- · Achieve higher accuracy and precision by integrating relevant metrics in the model
- Automate mathematical model using tools such as Microsoft Excel

THREAT

- · Create language barrier who have working know and those that do not
- Discourage assessmen complexity of the mode
- · Prone to mathematical can lead to wrong matu cost overrun, and sched

Quantitative Tools

STRENGTHS

- Assessment of maturity of a particular technology at a point in time
- comparison of different technologies based on its standard set of questions
- · Can be performed fast and iteratively
- · Not subject to miscalculation

WEAKNESSES

- · Discrepancy in result if questions are answered incorrectly or omitted
- · Does not tell the risk involved in improving to a
- · Does not incorporate quantitative and tangible system metrics
- · Definitions subject to misinterpretation
- Subjective

OPPORTUNITIES

SWOT

THREATS

- Incorporate hard metrics
- · Achieve accuracy and precision via more concrete and succinct exit criteria
- · Make user-friendly

- Resulting output in the form of dfinitions is subject to personal interpretation
- · Discrepancy in outcome as a result of ambiguous questions can result in wrong maturity assessmen that can have adverse impact
- · Commerical tools can cost big money

Auto Tools

Conclusion & Recommendations

Evaluation of technology maturity is critical because it provides insight into technical and programmatic risk by:

- Establishes milestones to track development progress
- Establishes entry and exit criteria for various milestones
- Provides direction for risk management and mitigation

Objective and robust methods that can assess technology maturity accurately improve acquisition outcome

17

"Every dollar spent on inefficiencies in acquiring one weapon system is less money available for other opportunities." (GAO 2006)