

Successful First AESA Deployment through Application of Systems Engineering

Terry Duggan Scott Nichols Christopher Moore 29 October 2009

Outline

- Background
- Approach
- Systems Engineering Activities
- Results of Analyses
- Readiness Assessment
- What Happened
- Lessons Learned

Background

- Raytheon developed a new AESA radar for the F/A-18E/F aircraft under contract to Boeing for the US Navy
- After completion of OPEVAL and training, US Navy planned to deploy two full squadrons of 12 jets each with new AESA radars for a six month deployment in support of OIF/OEF.
 - One squadron on the USS Reagan deployed from San Diego, CA and one on the USS Roosevelt deployed from Norfolk, VA.
- US Navy/Boeing/Raytheon Team dedicated to deployment success!

Used a Systems Engineering Approach to Address All Aspects of First Deployments

- Created a joint team of Navy, Boeing and Raytheon representing the various disciplines required for a successful deployment
 - Squadron Commanders, pilots, maintainers, engineers, software engineers, field support technicians, repair management, etc
- Determined Success Criteria
 - Stability of hardware
 - Tactical performance
 - Inputs from Commanders
 - Inputs from Navy Maintainers
 - Inputs from USN PMO/DAPML
- Visited each of the 2 squadrons on each coast to conduct pre-deployment readiness review/coordination sessions
- Assess all Logistics Elements
- Developed Action Plan
 - Developed a readiness checklist
 - Spares, repairs, retrofits, IETMs, etc
- Worked Plan
- Supported Deployment
- Prepared Lesson Learned

- Hardware Readiness
 - Evaluate maturity of hardware to be deployed
 - Determined the minimal configuration of each radar LRU (WRA).
 - Identified hardware that needed to incorporate retrofits for radars to be deployed
- Evaluate Performance of Tactical Software
 - Analyzed OPEVAL and training data of various mission profiles
 - Analyzed data on various tactical software releases
 - Analyzed current problems/anomalies reported from fleet and pilots
 - Developed procedure to work-around critical anomalies
- Evaluate performance of BIT software
 - Ability to accurately Fault Detect
 - Ability to accurately Fault Isolate
 - False Alarm rate

Systems Engineering Assessment of All Logistics Elements

- Maintenance Concept
- Supply Support
- Repairs
- Depot Status
- Tech Reps
- IETMS
- PHST
- Maintenance Training
- Reliability
- Support Equipment
- Tools

Raytheon

Results of Analyses

				Priorities		
	H/W List of Items	Comment	High	Med	Low	
1	Antenna Filter	Special tools and training will be needed. Difficult to do on airplane				
2	Reload Spares with H4 OFP	GPP, ARI, PPM, SNBC, and MFA/BSC need to be loaded with H4, 8P	\checkmark			
3	Check busbar torques	Should check for torque value				
4	Spare IRR Attach bolts	Top and bottom bolts (different bolts) have been know to strip and bind				
		- check torque value - spare bolts				
5	MFA Attach bolts	- spare green loctite				
6	FC Cables	extra set of FC cables for IQ and AL between CISP and REX				
7	Spare RF Green Y Cable	RF cable between Antenna and REX				
8	MFA Busbar Screws	see parts list				
9	PCU Repair kit	upper bolt repair Vit				
10	Spare IRR's	When the MSS to the fail, thire we ways to fix. 1 swap IRR 2- complete teardown of the IRR (risk of break if maint in the property)	\checkmark			
11	Cover Hinge Loctite	CISP, REX, RPS				
12	WRA Shipping containers					
13	BIT Tool	Laptop which contains the BIT Tool to help roubleshoot				
14	Check CAL information	Run the BIT CST and TR Element tests on the airplanes to trend performance				
15	Subrack Spare Parts	Special tools and parts will be needed1/4 Turn Cover Fasteners, Attach bolts, EMI gasket, QD's (module and subrack)				
16	Review A/C "Grey" failures	Some A/C were having issues at power up (FCAL not connecting) and Arrays failing and healing itself. It hasn't officially failed.		\checkmark		
17	Cable assembly for support pan	in case it breaks				

Mitigation:

- Recommend a spare radar
- Provide consumable parts for deployment

AESA Maintenance Concept

Developed Plan to Address Items in the Readiness Assessment

- Hardware upgrades
 - Plan for retrofitting Hardware
- Software Upgrades
 - Identified required version of tactical software (OFP)
 - Identified issues with software performance
 - Published new instructions for Pilots to mitigate or eliminate problems
- Generated a minimal Spares List
 - WRAs
 - Consumables
 - Special tools
- Ensured adequate repair contract in place
 - Arranged for surge capacity
- Identified Additional Maintainer Training
- Established a 24 hour help desk
- Established contract for tech reps to go to sea
- Provided list of required Support Equipment
- Communicated plan and status to all stakeholders weekly/daily

24 Hour Help Desk/Repair Communication Flow Process Implemented

Results of VFA-22 Squadron Deployment

- Deployed on cruise with 12 F/A-18F aircraft
- 6 month deployment (May to November)
 - 1,713 sorties flown
 - 3,773 hours flown
 - 19 Radar Parts (WRAs) ordered
 - 137 Maintenance Discrepancies written against the radar

Radar Reliability Exceeded Predictions and Maintainers Complained of Nothing to DO

Results of VFA-213 Squadron Deployment

- Deployed on cruise with 12 F/A-18F aircraft
- Over 7.5 month deployment (September to April)
 - 2,120 Sorties flown
 - 6,536 Hours flown
 - 24 Radar Parts (WRAs) ordered
 - 245 Maintenance actions written against the radar

Kaytheon

Lessons Learned - The Good

- Communications throughout the planning & deployment crucial
- Getting all the stakeholders involved early led to better planning and execution
- The work-around procedures eliminated the previously experienced pilot problems
- Had the right set of Support Equipment to perform majority of required maintenance actions
- Had sufficient spares on board
- Broken Non-Classified Hardware was quickly removed and sent back to Raytheon for repair
- Additional tools and consumables were useful
- Great support from 24 hour help desk
- Prior to deployment, the verification of spares, consumables and support equipment paid huge dividends while deployed!
 - Inventory discrepancies
 - Incorrect NIIN's
 - Wrong location
 - Missing quantities

Did it but could have been easier

Lessons Learned – The Not so Good

- Was very difficult and time consuming to perform pre-deployment verification of spares, consumables and support equipment
- Lacked ability to remove Integrated Radar Rack without improvising a stand and using extra bodies
- Process to get broken classified hardware off the ship and back to depot was inconsistent and slow.
- Didn't identify all the consumables that were needed.
 - Missing one cable

VFA-22 & VFA-213 and AESA

- First AESA squadrons to:
 - Complete the workup cycle
 - Fly Combat Missions
 - Drop ordnance in Combat
 - Fire the gun in Combat
 - Complete a successful CVN deployment
 - Numerous AESA articles written
 - Defense daily
 - Stars and Stripes
 - Sea Power Magazine

A Successful Deployment – Setting the Standard

Question and Answer

