A Methodology for Assessing Systems Engineering Practices

Lauren Levy – Lauren.Levy @jhuapl.edu David McDonnell – David.McDonnell @jhuapl.edu Timothy Herder – Tim.Herder @jhuapl.edu

Approved for public release; distribution is unlimited. SMC Case no. 09-423

The Johns Hopkins University APPLIED PHYSICS LABORATORY

AP

Agenda

- Purpose for Devising a Systems Engineering Assessment Methodology
- Systems Engineering Assessment Methodology Overview
- Systems Engineering Case Study
- Systems Engineering Assessment Methodology Potential Applications
- Summary

Purpose for Devising a Systems Engineering (SE) Assessment Methodology

 To assess the effectiveness of systems engineering activities and to show how this knowledge can assist with planning for activities on current and future programs.

SE Assessment Methodology Overview – Systems Engineering Method

 Logical set of activities to be accomplished in every System Life Cycle phase

Figure adapted from "Systems Engineering Principles and Practice", Kossiakoff and Sweet, 2003

Requirements Analysis – Assemble and organize input conditions and clarify, correct, and quantify what the system must do

Functional Definition – Translate requirements into functions and define interactions among functional elements

Physical Definition – Translate functional design into hardware and software components and select preferred approach to best balance performance, risk, cost, and schedule

Design Validation – Design models and the system test environment then simulates or test/analyze system with the models

SE Assessment Methodology Overview – System Life Cycle

 System Life Cycle: divides complex system development process into phases

Figure adapted from "Systems Engineering Principles and Practice", Kossiakoff and Sweet, 2003

- Needs Analysis Defines the need for a new system and determines if there is a practical approach to satisfying such a need
- Concept Exploration Examines potential system concepts and identifies required performance and feasibility of possible approaches
- Concept Definition Analyzes a number of alternative concepts in order to select a preferred concept that will be developed

SE Assessment Methodology Overview – Phase Sequence

- The Systems Engineering Method is applied iteratively to each phase of the System Life Cycle
 - This example shows the Concept Development phase:

Systems	Concept Development Life Cycle Phase									
Engineering Method Step	Needs Analysis	Concept Exploration	Concept Definition							
Requirements Analysis	<u>A</u> : Analyze needs	<u>E</u> : Analyze operational requirements	<u>I</u> : Analyze performance requirements							
Functional Definition	<u>B</u> : Define system functions	<u>F</u> : Define subsystem functions	<u>J</u> : Define component functions							
Physical Definition	<u>C</u> : Visualize subsystem technology	<u>G</u> : Visualize components, architectures	<u>K</u> : Select components, architecture							
Design Validation	<u>D</u> : Validate needs, feasibility	<u>H</u> : Validate performance requirements	L: Simulate, validate system effectiveness							

SE Assessment Methodology Overview – Activity Context

- Need knowledge from the prior steps for current step
 - May be done by same people/organization or others
 - Accumulated steps provide the whole picture
- Information does not need to be complete to start next activity steps
 - Should be sufficient level to support <u>initiating</u> the next activities

SE Assessment Methodology Overview – Terminology

- Impact refers to the level of influence on the program
 - Impact ≠ Effort : Impact does not necessarily reflect amount of effort by contractor and program office
- Assessed impact to the project/program
 - Three levels of impact (High, Medium, and Low) as determined by Sponsor and Subject Matter Experts
- "Actual" vs. "Ideal" Impact
 - "Ideal" impact assumes prior steps were done sufficiently to support informational needs for this step and effort progresses exactly as originally planned
 - "Ideal" varies depending on intended application of SE Method
 - "Actual" impact is the assessed program impact of the systems engineering effort

Systems Engineering Case Study – Assessment Goals

- Understand the impact of APL SE actions and activities on the program and their relationship to the whole
 - Devise a way to look back at how tasking evolved from baseline plan and its impact on the effectiveness of the program
 - Conduct assessment of activities to understand why unanticipated activities occurred
 - Provide considerations and guidance to be used for planning and organizing future activities

Systems Engineering Case Study – Case Study Description

- Sponsor: Air Force Space Command Space and Missile Systems Center (SMC)
- Initial Tasking
 - Systems Engineering Requirements generation and integration of pilot program
 - Intended scope Concept Exploration Phase within Concept Development
- Evolution: as tasks progressed, information gaps were identified and activities shifted (with sponsor concurrence) to address these needs
 - Evolution within a program is anticipated, to a certain extent, with the discovery and realization of key system concepts
 - In this case study, tasking and activity changes differed from what was expected with standard SE program evolution
 - It is important to understand why unanticipated activities occur to help learn and improve for the future

Systems Engineering Case Study – Major Activities

- Requirements Generation
 - Requirements Definition
 - Mission Analysis
 - Technology and User Studies
 - Modeling
- Prototyping
 - Concept Demonstrator
 - Concept Development Testing Environment

Systems Engineering Case Study – Requirements Definition: Ideal

Systems	Concept Development Life Cycle Phase									
Engineering Method Step	Needs Analysis	Concept Definition								
Requirements Analysis	А	Ш	-							
Functional Definition	В	F	J							
Physical Definition	С	G	K							
Design Validation	D	Н	L							
Key:	High Impact	Medium Impact	Low Impact							

 Anticipated requirements activity: create a Technical Requirements Document

Systems Engineering Case Study – Requirements Definition: Actual

Systems	Concept Development Life Cycle Phase									
Engineering Method Step	Needs Analysis	Concept Exploration	Concept Definition							
Requirements Analysis	А	Ш								
Functional Definition	В	F	J							
Physical Definition	С	G	K							
Design Validation	D	Н	L							
Key:	High Impact	Medium Impact	Low Impact							

- Tasked to develop Technical Requirements Document (TRD)
 - Found guidance documents lacked needed detail
 - Added Process Flow documents to supplement Needs Analysis information and provide common understanding of system functions

Systems Engineering Case Study – Requirements Definition: Comparison

	Concept Dev	velopment Life	Cycle Phase		Concept Development Life Cycle Phase			
Ideal	deal Needs Concept Concept Analysis Exploration Definition		Actual	Needs Analysis	Concept Exploration	Concept Definition		
Requirements Analysis	А	Ш	I	Requirements Analysis	А	E	I	
Functional Definition	В	μ	J	Functional Definition	В	F	J	
Physical Definition	С	G	K	Physical Definition	С	G	K	
Design Validation	D	Н	L	Design Validation	D	Н	L	
Key:	High Impact	Medium Impact	Low Impact	Key:	High Impact	Medium Impact	Low Impact	

- Early Needs Analysis information was not mature
 - Shift in focus needed to earlier steps
 - Resources and information unavailable to properly address later steps
- Level of resulting information insufficient to support followon Concept Definition activities

Systems Engineering Case Study – Mission Analysis: Ideal

Systems	Concept Development Life Cycle Phase									
Engineering Method Step	Needs Analysis	Concept Exploration	Concept Definition							
Requirements Analysis	А	Ш	_							
Functional Definition	В	F	J							
Physical Definition	С	G	K							
Design Validation	D	Н	L							
Key:	High Impact	Medium Impact	Low Impact							

Analyses conducted to support requirements effort

Systems Engineering Case Study – Mission Analysis: Actual

Systems	Concept Development Life Cycle Phase									
Engineering Method Step	Needs Analysis	Concept Exploration	Concept Definition							
Requirements Analysis	А	E	l							
Functional Definition	В	F	J							
Physical Definition	С	G	K							
Design Validation	D	Н	L							
Key:	High Impact	Medium Impact	Low Impact							

- Provided important knowledge to support requirements activities
- Helped to supplement incomplete Needs Analysis information

Systems Engineering Case Study – Mission Analysis: Comparison

	Concept Dev	velopment Life	Cycle Phase		Concept Development Life Cycle Phase				
Ideal	Needs Analysis	Concept Exploration	Concept Definition	Actual	Needs Analysis	Concept Exploration	Concept Definition		
Requirements Analysis	А	Ш	Ι	Requirements Analysis	А	Ш	Ι		
Functional Definition	В	н	J	Functional Definition	В	ш	J		
Physical Definition	С	G	K	Physical Definition	С	G	К		
Design Validation	D	Н	L	Design Validation	D	H	L		
Key:	High Impact	Medium Impact	Low Impact	Key:	High Impact	Medium Impact	Low Impact		

- Actual impact in Concept Exploration was relatively close the ideal impact
- Mission needs were unclear, thus analysis had to address earlier steps in Needs Analysis than initially intended
 - Resulted in diminished ability to address Physical Definition and Design Validation steps

Systems Engineering Case Study – Summary Tables

Ideal Summary

LC Phase	1					2			3			
		Needs A	Analysis		C	Concept Exploration				Concept Definition		
SE Step	1	2	3	4	1	2	3	4	1	2	3	4
-	RA	FD	PD	DV	RA	FD	PD	DV	RA	FD	PD	DV
Cell	Α	В	С	D	E	F	G	Н		J	K	L
Requirements					Н	Н	Н	L	М	М		
Mission Analysis			М	Н	Н	Н	М	L				
Tech /User Studies					М	М	Н	L	L	М		
Modeling				L	L	L	М	Н	H	М		
Concept Demo					L	М	М	Н		L	L	М
Concept Testing			L	L			Н	Н			М	М

Actual Summary

LC Phase	1				2				3				
		Needs A	Analysis		C	Concept Exploration				Concept Definition			
SE Step	1	2	3	4	1	2	3	4	1	2	3	4	
	RA	FD	PD	DV	RA	FD	PD	DV	RA	FD	PD	DV	
Cell	Α	В	С	D	E	F	G	Н		J	K	L	
Requirements	М	Н			Н	Н			L				
Mission Analysis	Н	М		L	Н	Н	L	L					
Tech/User Studies	М	L	L	L	М								
Modeling						L	М	L					
Concept Demo					L	М	М	L		L			
Concept Testing						L	L	M					

Systems Engineering Case Study – Summary Assessment

- Relative to Ideal impact, Actual impact overall was
 - Less than anticipated
 - Especially in Physical Definition and Design Validation steps
 - Earlier in the life cycle than anticipated
 - Provided higher impact in Needs Analysis
 - Identified some needed information
 - Uncovered additional questions to be addressed by sponsor organizations
- Impact to Concept Exploration and Concept Definition phases was lessened due to Needs Analysis phase deficiencies
 - Information was insufficient to support CE and CD activities
 - Efforts diverted to the Needs Analysis phase

Systems Engineering Assessment Methodology – Potential Applications

- Program Office planning and tasking
 - Help to identify information needs and potential gaps
 - Help to visualize activities and what makes them successful
 - Map each activity to appropriate step(s) and identify information that precedes it as well as what steps it supports in turn
- Coordination of efforts
 - Can be a common means of coordination between organizations
 - Set expectations for inputs and outputs for task activities
 - Clarify deliverables impact and stakeholders

Summary

- This Methodology was useful to visualize the effectiveness of real-world systems engineering activities.
- Expect this Methodology to be useful in assessing the effectiveness of other programs so that additional lessons can be learned towards future improvements.
- Anticipate this Methodology may provide additional insight to sponsors and to internal SE teams in assessing what is required to support a given effort.

