Generating Visual and Interactive Output from System Engineering Tools

John Schatz / SPEC Innovations 29 October 2009

Overview

- Methodology
- KBAD Schema
- Information Capture Process
- Risk Matrix Visualization
- TPM Capture and Visualization
- Expandable-Collapsible Tree Visualization
- Geo-Spatial Visualization

Methodology

Modify SE Knowledge-Base Schema

Capture Information in SE Knowledge-Base

Extract Data from SE Knowledge-base

Execute Output Loop

Execute Criteria
Based Business Logic

Output Loop

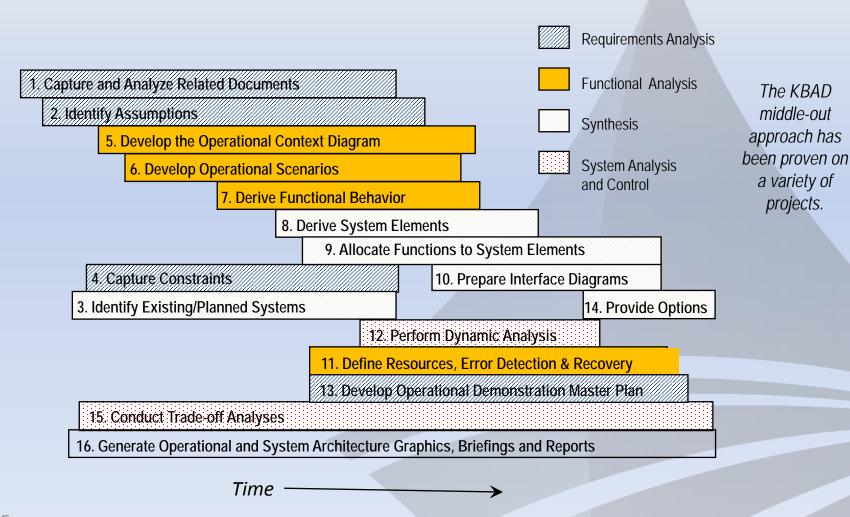
Export Data in Modified Format (RTF, HTML, XML)

Determine Outputs

KBAD Schema

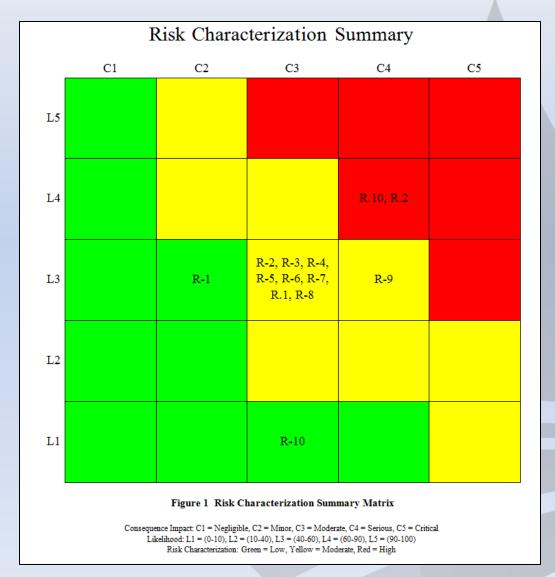
KBAD* Element	CORE Elements	Rationale			
Action	Function/Operational Activity	Provide overall class for actions			
Artifact	Document	Recognized not just documents			
Asset	Component/Operational Element	Provide overall class for assets			
Characteristic	type of Requirement	Way to capture metrics and other characteristics of an element			
Cost	attribute of Component	Broadens capture of costs			
Input/Output	Item/Operational Information	Clearer name			
Issue	Issue	Same			
Link	Link/Needline	Provide overall class for transmission			
Location	none	Captures geolocation information			
Risk	Risk	Same			
Statement	type of Requirement	Clearer name			
Time	attribute of Function	Broadens capture of times			

The KBAD Schema supports the capture of data items and relationships utilized in the examples.


Capture Information in SE Knowledge-Base

The KBAD middle-out

approach has


a variety of

projects.

Risk Matrix Example

Risk Matrix Example - Logic

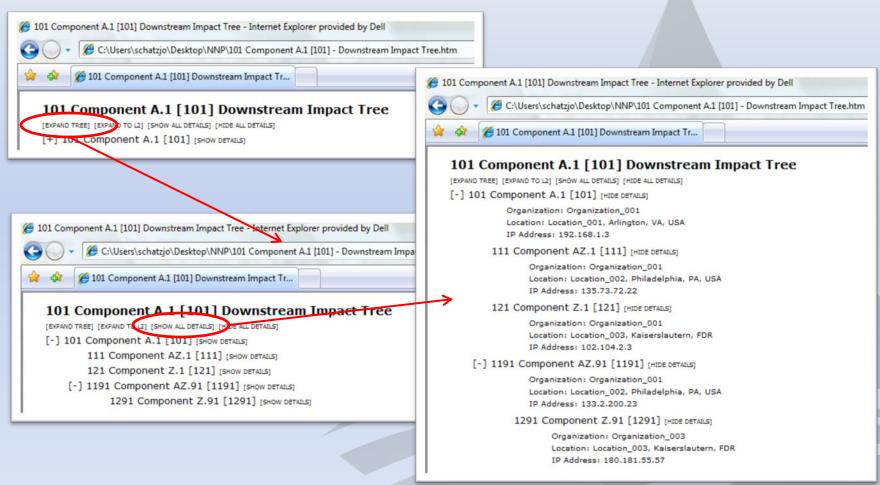
- 1. Extract Risks of interest.
- 2. Create lists of risks for each Risk Matrix cell by examining the risks' consequences and likelihoods.
- 3. Begin streaming RTF file up to first cell.
- 4. Set cell color. The cell colors are fixed.
- 5. Insert risks for given cell.
- 6. Etc.

TPM Example

	Technical Performance Measures						
	Current	Projected	Threshold	Objective	Units	Imp.Dir	
Hardware Assets					_		
SBPG Ground Element							
TPM: Ground Element MTTR	60.0	31.0	30.0	15.0	minutes	Negative	
SBPG On-Orbit Element		•					
TPM: On-Orbit Element Lifespan	13.0	15.2	10.0	15.0	years	Positive	
TPM: On-Orbit Element Transmission Efficiency	0.63	0.65	0.65	0.75		Positive	
TPM: On-Orbit Element Weight	6500.0	5800.0	6000.0	5000.0	kg	Negativ	
System Functions							
Execute Maneuver Commands							
TPM: Characteristic_001	10.0	13.2	11.0	13.0	seconds	Positive	
Issue Maintenance Alert							
TPM: Characteristic_002	0.95	0.97	0.95	0.98		Positive	
Collect Solar Energy							
TPM: Characteristic_003	0.65	0.66	0.6	0.65		Positive	

Figure 1 SBPG Context Performance Parameters Matrix

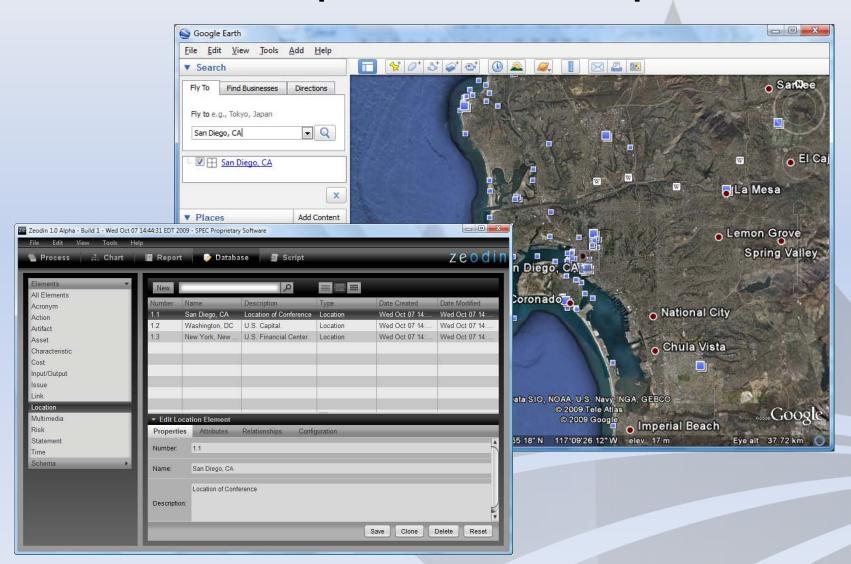
Value Characterization: Green = Exceeds Objective, Yellow = Between Threshold and Objective, Red = Does Not Meet Threshold



TPM Example - Logic

- 1. Extract TPMs for systems of interest.
- 2. Begin streaming RTF file up to first System row.
- 3. Insert System name.
- 4. Stream up to the system's first TPM.
- 5. Insert TPM name.
- 6. Compare current and projected values against threshold and object values taking improvement direction into account.
- 7. Determine cell color based on predetermined criteria.
- 8. Insert color coded cells with current and projected values.
- 9. Etc.

Expandable-Collapsible Tree Example



Expandable-Collapsible Tree Example - Logic

- 1. Write JavaScript and CSS files.
- 2. Extract nodes in an interconnected nodal network.
- 3. Generate index file of all nodes.
- 4. Iterate through nodes doing the following for each:
 - Generate expandable tree branches and leaves. Prevent closed loops.
 - 2. Begin streaming HTML file with JavaScript and CSS files referenced.
 - 3. Store controls and tree data in JavaScript node array.
 - 4. Store starting positions in JavaScript position array.
 - Encode nodes into HTML file as absolutely positioned items with embedded JavaScript commands to access Document Object Model (DOM) for hiding or showing nodes.

Geo-Spatial Example

Geo-Spatial Example - Logic

Zeodin

exports to

KML File

is opened with

Google Earth

- 1. Generate KML header information.
- 2. Extract assets from SE Knowledge-Base.
- 3. Iterate through assets streaming asset specific KML.

Summary

- Use of other products for visualization is necessary, since most SE tools provide poor graphics for a general audience
- Output from COTS Products can be modified to enhance visualization
- Most tools provide scripting that enable creative visualization

