

www.systemsandsoftware.org

Evolving Systems Engineering through Model Driven Functional Analysis

Date: October 2009

Mark R. Blackburn, Ph.D., Fellow, Systems and Software Consortium (SSCI)

Sharad Kumar, Sr. Director Systems Engineering General Dynamics Land Systems (GDLS)

GENERAL DYNAMICS

Agenda

- Functional analysis gap assessment
 - Who we are
 - What's the situation
 - What we did
 - What we found

Perspectives that might apply to your organization

- Perspectives on functional analysis
- What are the impacts of Model Driven Engineering (MDE)
- How are things evolving
- Some common recommendations made to SSCI members

About the Consortium

Systems and Software Engineering Practices

Realizing value from process improvement

- Value-driven process improvement
- Quantifiable business performance measures
- CMM®, CMMI® appraisals

Life cycle strategies for complex systems

- Disciplined Agility
- Systematic reuse / Product lines

Implementing integrated engineering

- Model-driven engineering
- Requirements analysis & automated testing
- Architecture and design
- Security
- Measurement & analysis
- Verification and validation/Mission assurance

Applied to Member Needs

As a Consortium

- Co-funded development
- Practitioner-led training
- Technology transfer

As a Teammate

- Subject matter experts
- Process consulting
- Technology consulting

As an Industry Association

- Voice of Industry
- Influence govt. agencies
- Best practices/guidelines
- Neutral ground/honest broker

Learn more at

www.systemsandsoftware.org with a For Members Only account

This Project: Problem Area Assessment

Approved for Public Release, Distribution Unlimited, GDLS approved, Log No. 2009-107, dated 10/05/09

Copyright © 2009, Systems and Software Consortium, Inc.

Version 1.0

General Dynamics Overview

Corporate Overview

- 5th largest U.S. defense contractor and a leading manufacturer of business jets
- 2008 Sales of \$29.3 billion
- Approximately 92,900 employees operating in: United States, Australia, Austria, Canada, Germany, Mexico, Spain, Switzerland and the United Kingdom

Business Units and Operating Groups

- Aerospace 15,300 Employees
- Combat Systems 18,500 Employees
- Information Systems and Technology 34,000 Employees
- Marine Systems 22,000 Employees

Combat Systems Group

General Dynamics Land Systems (GDLS) – Ground and Amphibious Combat Vehicles

- Headquartered in Sterling Heights, Michigan
- Operating sites in Alabama, California, Florida, Maryland, Michigan, Ohio, Pennsylvania, Virginia, Washington, Australia and Canada
- International Programs in Afghanistan, Australia, Canada, Egypt, Germany, Iraq, Israel, Kuwait, Morocco, New Zealand, Qatar, Saudi Arabia and the United Kingdom
- European Land Systems Armored Vehicles, Weapons and Ammunition
 - Headquartered in Vienna, Austria with operating sites in Germany, Spain, Switzerland
- Ordnance and Tactical Systems Ammunition
 - Headquartered in St. Petersburg, Florida with operating sites in Alabama, California, Florida, Illinois, Pennsylvania, Texas, Washington and Canada
- Armament and Technical Products Guns, Detection Systems and Composites
 - Headquartered in Charlotte, North Carolina with operating sites in Arkansas, Maine, Mississippi, Nebraska, Virginia and Vermont

Approved for Public Release, Distribution Unlimited, GDLS approved, Log No. 2009-107, dated 10/05/09

Copyright © 2009, Systems and Software Consortium, Inc.

Medium Caliber Ammunition

GENERAL DYNAMICS

GDLS' processes and methods for functional analysis have the following objectives:

- 1. Perform analysis in alignment with contract and industry standards
- 2. Reduce cycle time through continuous improvement
- 3. Maintain cycle time but increase value by greater through put, quality and consistency
- 4. Lead design by maturing interfaces, functional requirements and performance allocations into design cycle

Approved for Public Release, Distribution Unlimited, GDLS approved, Log No. 2009-107, dated 10/05/09

What We Did - Approach

- GDLS requested that SSCI perform an assessment of their functional analysis practices
 - SSCI worked with GDLS team to identify and scope the project – i.e. include anything related to functional analysis (e.g., processes, skills, technologies, organizational dynamics, etc.)
 - Conducted interviews/workshops with three lines of business that included domain experts, SMEs and a cross section of managers
 - Captured 110 individual items of feedback that SSCI reduced into about 20 general categories
 - Produced technical report summarizing the detailed findings
 - Conducted out-briefings to senior management on observations and recommendations

What We Found

• Key Findings and Insights:

- Good processes, practices, and training have been developed and are in use by GDLS programs, but could be more tightly integrated
- Modeling and simulation is being used to provide means for assessing performance and design alternatives to support system concept selection
- Practices are evolving to leverage model-driven engineering

SSCI Recommendations

- Short-term and long-term recommendations addressing:
 - Integrated engineering
 - Technology adoption
 - Customer discussions on technology and process evolution
 - Organization and responsibilities
 - Leveraging methods and domain knowledge expertise

Approved for Public Release, Distribution Unlimited, GDLS approved, Log No. 2009-107, dated 10/05/09

8

Perspective on Functional Analysis

- First notable methods for functional analysis is often attributed to Lawrence D. Miles who was a design engineer for General Electric (1940s)
 - Charles Bytheway extended Mile's functional analysis concepts and introduced the methodology called Function Analysis Systems Technique (FAST)
 - Key perspective came at functional analysis from a value perspective
 - Key focus is on alternative designs to achieve only the required functions at the lowest cost while meeting the fundamental requirements of the customer
- As system complexity increases and where product lines are necessary, a broader view is needed
 - Functional analysis provides inputs to architecting which are important for product lines

Approved for Public Release, Distribution Unlimited, GDLS approved, Log No. 2009-107, dated 10/05/09

9

Evolving Systems Engineering through Model Driven Functional Analysis

Conceptual Outputs of Systems Engineering Process*

- Fundamental information from functional analysis is:
 - Derived requirements
 - Performance requirements
 - Interfaces
- Documentation of alternatives and decisions

*Source: Condensed Guidelines for Successful Acquisition and Management of Software-Intensive Systems Handbook

Approved for Public Release, Distribution Unlimited, GDLS approved, Log No. 2009-107, dated 10/05/09

Copyright © 2009, Systems and Software Consortium, Inc.

Version 1.0

Evolving Systems Engineering through Model Driven Functional Analysis

GDLS Process Extends IEEE 1220 System Engineering Process

• Represents the interfaces to Functional Analysis

PROCESS OUTPUTS

Approved for Public Release, Distribution Unlimited, GDLS approved, Log No. 2009-107, dated 10/05/09

More of What We Found

- GDLS is moving towards a broader view of functional analysis through the integration of:
 - System concept selection supported by computational-based decision analysis for ranking alternatives
 - Modeling & simulation supporting performance, dynamic, structural, thermal, functional and combat analyses
 - System-level functional analysis that traces the potentially significant impact on lower-level decisions down through subsystems
 - Capture operational threads that cut across subsystems
- Integrating functional analysis throughout system engineering and subsystems can be challenging

Approved for Public Release, Distribution Unlimited, GDLS approved, Log No. 2009-107, dated 10/05/09

Integrated Engineering

• "Modern" perspective on functional analysis

Impacts of MDE Adoption

- Driver: use UML-based notation to improve communication with software engineers
- Barrier: what UML-based notations for functional analysis are usable by system engineers and understandable by customers
 - System Modeling Language (SysML) derived from UML for system engineers
 - UML and SysML are designed as a general-purpose language
 - Challenge becomes determining what modeling artifacts to use how and when
- Benefits of automation through tailored and integrated tooling
- Technology adoption readiness is a common issue with SSCI members

Approved for Public Release, Distribution Unlimited, GDLS approved, Log No. 2009-107, dated 10/05/09

SYSTEMS AND SOFTWARE CONSORTIUM BUILDING BETTER SOLUTIONS TOGETHER

The Four Pillars of SysML

Approved for Public Release, Distribution Unlimited, GDLS approved, Log No. 2009-107, dated 10/05/09

Copyright © 2009, Systems and Software Consortium, Inc.

Version 1.0

GENERAL DYNAMICS

15

SysML Diagrams Represent System Engineering Views

 SSCI members are interested in how SysML supports key system engineering processes for requirement, functional analysis, and more

GDLS MDE-Related Improvements

- Use of storyboards addressing need for better CONOPS that are easy to understand and relevant to stakeholders – tailored activity diagrams
- Generation of sequence diagram with automation to move derived requirements to be linked during process of elaborating sequence diagram
 - Efficiency and completeness step to ensure derived requirements moved to sequence diagram, where traceability links are added
- Allows for automated movement of requirements to DOORS[®]
- Validation through execution
- Allows for automated generation of measurement data for status/measurement of the analysis activities

Technology Adoption Recommendation

- Don't "jump" into projects without determining how to use MDE tools
 - One SSCI Member said: "after training we know how the tool works, but we don't know how to produce work with the tools"
- Use pilot projects first to understand the "real" value of artifacts produced by tools
- Don't over estimate value of results in comparison to effort needed to put tools and processes in place
- Align proposals with new types of deliverables
 - It takes more time to produce models for an SRR or SFR than it does using a document-centric approach
 - Documents can be incomplete ("good enough") for reviews, but inconsistent or incomplete models cannot

• Prepare for tool evolution (version upgrades)

Approved for Public Release, Distribution Unlimited, GDLS approved, Log No. 2009-107, dated 10/05/09

Evolving Systems Engineering through Model Driven Functional Analysis

Talk with Customer About Technology, Process, and Deliverable Changes

- Typical SRR and SFR (PDR/CDR) are based on traditional document-centric and waterfall lifecycle
- Model-based approaches result in artifacts that can contribute to multiple reviews, and can contribute downstream (e.g., V&V)
- Internal and external stakeholders need to understand that modeldriven upfront work is superior to document-centric analysis
- Successful SSCI member example:
 - Organization adopting new modeling practices brought customer in for multi-days review of new approach and deliverables
 - Customer recognized increased details in model-based artifacts that typically don't exist with document-based processes
 - Customer understood how details would be beneficial over entire development lifecycle
 - Customer was pleased and wanted to know why other projects were not using modeling approach

Approved for Public Release, Distribution Unlimited, GDLS approved, Log No. 2009-107, dated 10/05/09

Copyright © 2009, Systems and Software Consortium, Inc. Version 1.0

19

Points to Remember

- Integrated engineering is challenging, but needed as impacts of functional analysis decisions can cut across subsystems
 - MDE can provide many efficiencies and help link functional analysis information so that impacts can be identified faster and more easily

Technology adoption

- Evolving from document-centric to model-centric approach requires coordination with stakeholders
 - Models can take longer to develop, especially the first time
 - Models identify issues early and provide other downstream value
- Technology readiness can impact MDE adoption:
 - Know what/how models map to current processes
 - Understand tool value derived from operating on models
 - Understand how tool chains can support the entire life cycle
 - Use pilot projects to prepare for adoption

Consider discussing technology and process evolution changes with customers/stakeholders

For More Information

- **Questions on MDE**
 - Contact Mark R. Blackburn, Ph.D.
 - 561.637.3452; blackburn@systemsandsoftware.org

- General questions, products, services
 - Main Consortium number 703.742.8877
 - Home page <u>www.systemsandsoftware.org</u>

Approved for Public Release, Distribution Unlimited, GDLS approved, Log No. 2009-107, dated 10/05/09

Terms and Acronyms

AADL	Architecture Analysis & Design Language	MMM	Modeling Maturity Model
AP233	Application Protocol 233	MoDAF	United Kingdom Ministry of Defence Architectural
BPML	Business Process Modeling Language		Framework
CAD	Computer-Aided Design	MOF	Meta Object Facility
CASE	Computer-Aided Software Engineering	NASA	National Aeronautics and Space Administration
CATIA	Computer Aided Three-dimensional Interactive	OCL	Object Constraint Language
	Application	OMG	Object Management Group
CDR	Critical Design Review	00	Object oriented
CMM ®	Capability Maturity Model	PDR	Preliminary Design Review
CMMI ®	Capability Maturity Model Integration	PIM	Platform Independent Model
CONOPS	Concept of Operations	Pro/E	Pro/ENGINEER
CWM	Common Warehouse Metamodel	PSM	Platform Specific Model
DBMS	Database Management System	RFP	Request for Proposal
DoDAF	Depart of Defense Architectural Framework	ROI	Return On Investment
DSL	Domain Specific Languages	RTW	Mathworks Real Time Workshop
GDLS	General Dynamics Land Systems	SSCI	Systems and Software Consortium
IBM	International Business Machines	Simulink/	Product family for model-based control
ICD	Interface Control Document	Stateflow	system produced by The Mathworks
IEEE	Institute of Electrical and Electronics Engineers	SCR	Software Cost Reduction
INCOSE	International Council on Systems Engineering	SDD	Software Design Document
IPR	Integration Problem Report	SE	System Engineering
ISO	International Organization for Standardization	SFR	System Functional Review
IT	Information Technology	SME	Subject Matter Expert
Linux	An operating system created by Linus Torvalds	SQL	Structured Query Language
MAP	Modeling Adoption Practices	SRR	System Requirement Review
MARTE	Modeling and Analysis of Real Time Embedded systems	SRS	Software Requirement Specification
MATRIXx	Product family for model-based control system design	SysML	System Modeling Language
	produced by National Instruments	SystemC	IEEE Standard 1666
MBT	Model Based Testing	UML	Unified Modeling Language
MDA®	Model Driven Architecture®	XMI	XML Metadata Interchange
MDD™	Model Driven Development	XML	eXtensible Markup Language
MDE	Model Driven Engineering	xUML	Executable UML
MDSD	Model Driven Software Development	Unix	An operating system with trademark held by Open Group
MDSE	Model Driven Software Engineering	VHDL	Verilog Hardware Description Language
MIC	Model Integrated Computing	VGS	T-VEC Vector Generation System
		VxWorks	Operating system owned by WindRiver

Approved for Public Release, Distribution Unlimited, GDLS approved, Log No. 2009-107, dated 10/05/09

Copyright © 2009, Systems and Software Consortium, Inc.

Version 1.0

Trademarks

- SYSTEMS AND SOFTWARE CONSORTIUM BUILDING BETTER SOLUTIONS TOGETHER
- OMG®, MDA®, UML®, MOF®, XMI®, SysML[™], BPML[™] are registered trademarks or trademarks of the Object Management Group.
- IBM[™] is a trademark of the IBM Corporation
- DOORS is a registered trademark of IBM
- Java[™] and J2EE[™] are trademark of SUN Microsystems
- XML[™] is a trademark of W3C
- BridgePoint is a registered trademark of Mentor Graphics.
- Java is trademarked by Sun Microsystems, Inc.
- Linux is a registered trademark of The Linux Mark Institute.
- MagicDraw is a trademark of No Magic, Inc.
- MATRIXx is a registered trademark of National Instruments.
- MVS is a trademark of IBM.
- Real-time Studio Professional is a registered trademark of ARTiSAN Software Tools, Inc.
- Rhapsody is a registered trademark of Telelogic/IBM.
- Rose XDE is a registered trademark of IBM.
- SCADE is copyrighted to Esterel Technologies.
- Simulink and Stateflow are registered trademarks of The MathWorks.
- Statemate is a registered trademark of Telelogic/IBM.
- TAU/Developer is registered to Telelogic/IBM.
- T-VEC is a registered trademark of T-VEC Technologies, Inc.
- UNIX is a registered trademark of The Open Group.
- VAPS is registered at eNGENUITY Technologies.
- VxWorks is a registered trademark of Wind River Systems, Inc.
- VectorCAST is a trademark of Vector Software.
- Windows is a registered trademark of Microsoft Corporation in the United States and other countries.
- All other trademarks belong to their respective organizations.

