

Supportability Lessons Learnedwith Line Replaceable Modules

NDIA System Engineering Division

Heity Hsiung October 29, 2009

DoD Directions for Life-Cycle Support

- Reduce operating and support (O&S) costs for deployed weapon systems
- Minimize the logistics footprint for deployed weapon systems

One Way to Get There

- Design into our weapon systems lower value Line Replaceable Units (LRUs)
- Line Replaceable Modules (LRM) is one solution
- I will discuss some considerations/issues of implementing LRMs

Raytheon

LRM vs. LRU

Line Replaceable Module

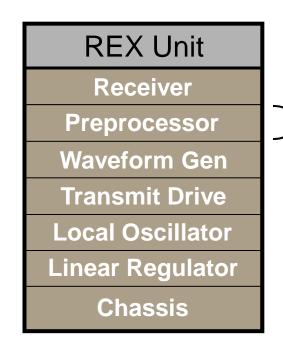
Line Replaceable Unit

LRM is more cost effective, light weight and easier to remove/replace

Environmental Design Considerations

Raytheon

- Vibration
 - Shock mounting approach
- Temperature
 - Operating temperature requirements
 - Not-in-use requirement (non-mission use)
- ESD
 - Prevent ESD damage due to any environmental factors



BIT Design Considerations

- Fault detection vs. fault isolation
 - Harder to isolate to LRM

Fault Isolation is easier at the LRU level.

Fault Isolation is harder at the LRM level

BIT Maturity: higher development costs → lower support costs

Maintainability Design Considerations

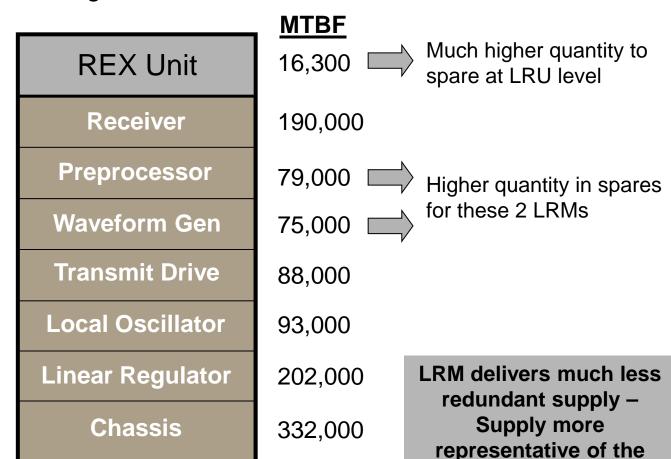
- Accessibility for maintenance
 - Installation trades
 - New platform
 - Major modification to existing platform
 - Access to module for testing and R/R
 - Access points for testing
 - Space to open covers/doors
 - Room to attach cabling and hoses
- Special Tooling/Support Equipment

Unique Identification (UID)

- Total Asset Visibility (TAV)
- Pedigree of the weapon system
- Real-time information
- History of the item (how many times it has come back, maintenance history, repair history, FRACAS)
- By tracking at the LRM level, faster trends, design implementation, and design changes are identified (as long as it is the same format/fit/function)

Storing

Storing


- Less storing space required for LRMs due to smaller size
- Under 250 lbs can utilize overnight express shipping
 - Less docking space required
 - Less time to transport
 - May reduce the need of special storage containers (i.e.; ISOPODS)
- Reduce the footprints in supply

Sparing

- Spare the high failure LRMs vs. LRUs
 - Quantity based on weighted failure rates
- Spare testing

actual failure items.

Summary

- Therefore LRMs can significantly reduce the logistics footprint due to fewer spares quantity and smaller physical dimensions of each spare.
- Reduced O&S cost can be achieved due to:
 - Decreased MTTR (Mean Time To Repair)
 - Requires less manpower effort to accomplish remove/replace
 - Minimized spare investment based on reliability at the lower level (LRM) of the weapon systems
 - Less special support equipment
 - Reduce shipping cost and faster shipping turnaround time

