On Modeling and Simulation Methods for Capturing Emergent Behaviors for Systems of Systems

S. Balestrini-Robinson

Research Engineer Georgia Institute of Technology Atlanta, GA 30332 santiago.balestrini@asdl.gatech.edu

J. M. Zentner

Research Engineer Georgia Tech Research Institute Atlanta, GA 30332 zentner@gatech.edu

T. R. Ender

Research Engineer Georgia Tech Research Institute Atlanta, GA 30332 tommer@gatech.edu

12th Annual Systems Engineering Conference National Defense Industrial Association

> October 26-29, 2009 San Diego, CA

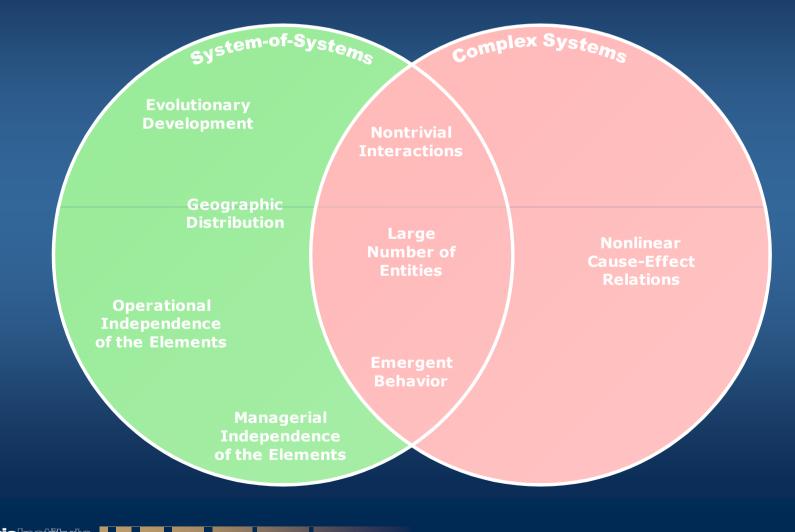
The Need for Modeling and Simulation

- System-of-Systems Engineering (SOSE) problems require a different approach than traditional Systems Engineering (SE)
- Good Modeling and Simulation is crucial to good Decision Making
 - Good decisions are based on good analysis
 - Analysis is based on models
- If models are not good → analysis will not be good → decisions won't be good either

Definitions

- System: a collection of components organized to accomplish a specific function or set of functions (IEEE)
- System-of-Systems: "a set or arrangement of systems that results when independent and useful systems are integrated into a larger system that delivers unique capabilities" [DoD Def. Acq. Guidebook 2004]
 - Emergent behavior, Evolutionary Development, Operational Independence of the Elements, Managerial Independence of the Elements, Geographic Distribution [Maier1996]
- Family-of-Systems: "A set or arrangement of independent systems that can be arranged or interconnected in various ways to provide different capabilities"

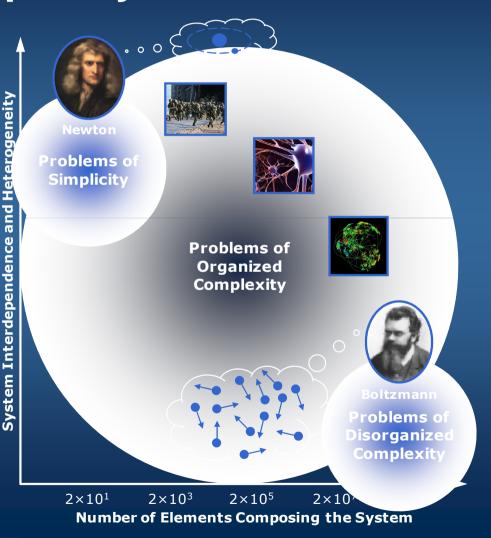
Definitions


- Emergence
 - Macro level behaviors (patterns) that cannot be predicted from studying the micro level behaviors in isolation
- Modeling & Simulation
 - Modeling: A rigorous method for creating and testing models.
 - Simulation: The exercise--either statistically or over time--of a model.
 - Model: An abstract representation of a system developed to aid in the understanding and/or predicting of its behavior.
- Complex Systems
 - Systems composed of a (1) large number of entities, with (2) non-trivial interaction networks (not too simple or too complete), whose (3) impacts on one another are non-linear, and whose overall behavior tends to display emergent characteristics

What is a Complex System?

- "A whole comprehending in its compass a number of parts, *esp.* (in later use) of interconnected parts or involved particulars; a complex or complicated whole" [Oxford English Dictionary]
- Definition (Interrelational)
 - A system composed of
 - a large number of (heterogeneous) entities
 - interacting nonlinearly
 - of the parts through non-trivial networks
 - which produce a macro-level pattern that cannot be inferred from the analysis in isolation
- Definition (Effect)
 - "A measure of uncertainty in understanding what it is we want to know or in achieving a functional requirement" [Suh2005]
- "It is exceedingly difficult to discern causality in a complex system from observation alone... Researchers must watch a very large number of [events] before the patterns become evident" [Cares2005]

Complex System vs. System-of-Systems



Georgialnstitute of **Tech**nology

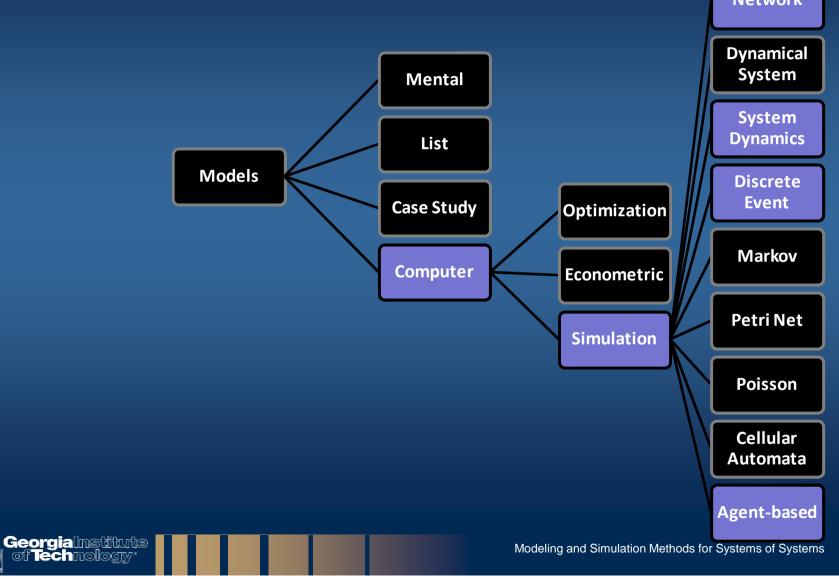
Modeling and Simulation Methods for Systems of Systems

The Evolution of Science towards Complexity

- In 1947, Weaver analyzed the history of science from the 17th century and noticed a pattern
- Recognizes that there were two main efforts until then
 - Between the 17th and 19th centuries science focused on problems with only a handful of variables (< 4)
 - In the 20th century statistical methods were developed to handle problems with large number of variables (> 10⁹)
- This left a considerable range of the problems faced by science without solid foundations
- The advent of the computer enabled the study of the area in-between the two camps
- This in-between field has come to be known as *complexity science*

Modeling Techniques

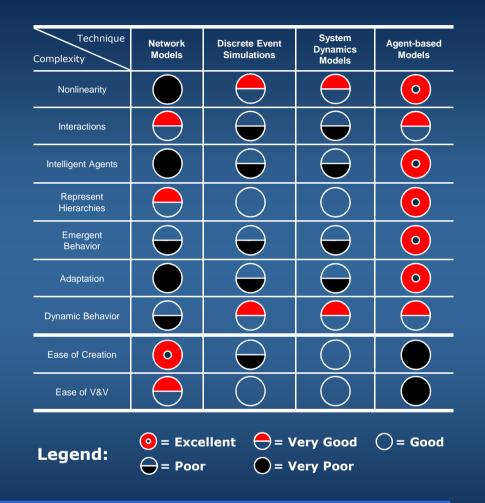
- Experts undergoing efforts to develop an ontology of simulation techniques
 - to establish a common vocabulary and capture domain expert knowledge
 - Current efforts centered around sub simulation categories,
 - e.g., Discrete Event Simulation Taxonomies^{*}, Agent-based Simulation Taxonomies[†]
 - Still no definite general simulation taxonomy
- Mental Models
 - We can only take a few factors into account when making a decision
 - Suited to linear problems
 - ([Hogarth1987], [Kahneman1982])


- Spreadsheet (a.k.a. List) Models
- Case Studies
- Computer Models
 - Optimization Models
 - Econometric Models
 - Simulation Models (not all inclusive)
 - Network Analysis
 - Markov Simulation
 - Petri Net Simulation
 - Discrete Event Simulation
 - Dynamical Systems
 - System Dynamics Simulation
 - Cellular Automata
 - Agent-based Simulation

Model for insights, for explanation, not numbers

^{*}[Sulistio2004], [Fishwick1998], [Fishwick2004], [Miller2004], [Silver2006] [†][Brenner2007] List of techniques based on [Ferguson2006], [Gustafsson2007], [Volovoi2004]

A Taxonomy of Modeling and Simulation

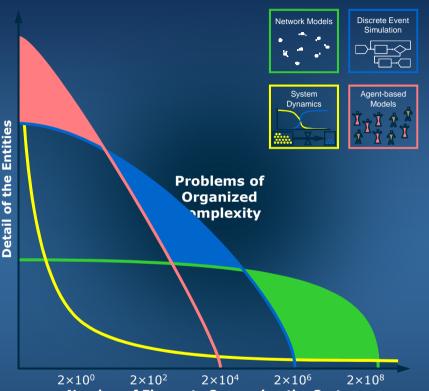

Evaluation of Simulation Techniques

Modeling Technique	Common Applications	Characteristics
Network Analysis	Biology, IT, telecommunications	Enables helistic analysis Space-time implicit
Markov Simulation	Queuing theory, statistical physics	Very Limited Scalability
Petri Net Simulation	Reliability, manufacturing, fault diagnosis	Limited Scalability
Discrete Event Simulation	Queuing theory, ecology, manufacturing	Spatially implicit
Dynamical Systems	Electrical circuits, mechanics, e.g., RLC circuit, SMD system	Used for Hi-Fidelity Modeling of physical systems
System Dynamics Simulation	Population, ecology, economy	Macro-level Analysis Spatially implicit
Cellular Automata	Ecology, real estate, artificial biology, self-replication	Spatially fix; Elements share the same rules
Agent-based Simulation	Ecology, population, artificial biology, combat simulation	Time and spatially explicit Scalability

Modeling Techniques for Complex Systems

No ideal method

- ABM most suitable, but most difficult to implement and validate
- NM are the easiest to implement but do not capture the dynamic behaviors or intelligence
- Methods are not exclusive, but complementary
- Others techniques considered but not discussed:
 - Markov Simulation, Petri Net Simulation, Dynamical Systems, Cellular Automata

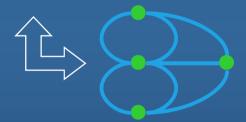

Complementary: Coarse modeling can guide detailed modeling

Modeling Techniques and the Paradigm of Complexity

- The question of how much can be modeled can be considered to be a question of
 - how many entities?
 - in how much detail?

<u>Georgialnstitu</u>t

- The modeling techniques map to a distinctive Pareto-front in the continuum
 - Notional plot based on literature reviews of different applications of the modeling techniques
 - As more entities are modeled, the techniques require that the entities be simplified
 - System Dynamics is an exception, because in its pure form it assumes that there are an infinite number of entities
 - Anything in the below or to the left of the line is a dominated solution


Number of Elements Composing the System

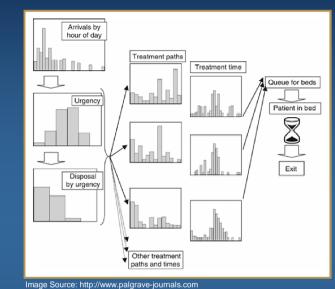
Large-Scale SoS → Network Models

Network Models

- In 1736 Leonhard Euler published Seven Bridges of \bullet Königsberg and gave birth to the study of graphs
- Graphs are "...mathematical structures used to model • pairwise relations between objects from a certain collection"
- Depicted in diagrammatic form as a set of dots (for • the points, vertices, or nodes), joined by curves (for the lines or edges)
- Different types of network models \bullet
 - e.g., Flow Graphs, Bipartite Graphs, Multi-layered Graphs, etc...
- Large number of algorithms to compute characteristics \bullet of the graph
- Suitable for capturing functional complexities, \bullet traditionally not suitable for capturing space and time dependent effects
- Recent efforts have developed algorithms for guickly • generating random graphs that mimic characteristics of real networks
 - e.g., scale-free, small-world networks, etc..

Types of Random Graphs

Random


Small-World

Scale-free

Discrete Event Simulation

- Formulated by Geoffrey Gordon (1960s)
- "Modeling approach based on the concept of entities, resources and block charts describing entity flow and resource sharing" [Borshchev2003]
- "A global entity processing algorithm, typically with stochastic elements" [Borshchev2003]
- Primarily investigates the performance over time of an interconnected system subject to internal (e.g. process failure) and external (e.g. environmental conditions) random variability [Morecroft2006]
- Any model that requires free movement of entities or a very detailed movement pattern is not easily simulated with DES
 - No intrinsic capability to capture spatial effects
- Generally preferred by the logistics communities to model supply chains
 - Supply networks are not as simple

T.LOADS & C.LOADS, SIW Log Forum, March 28, 2001.

Modeling and Simulation Methods for Systems of Systems

System Dynamics

- Formulated by Jay W. Forrester (1950s)
- System Dynamics is a
 - Top-down modeling approach, where the aggregate behavior of the system is modeled directly
 - methodology for studying and managing complex feedback systems, such as one finds in business and other social systems
- "Mathematically, an SD model is a system of differential equations" [Andrei2003]
- If the model works only with aggregates, the items in that same stock are indistinguishable, they have no individuality
- "The modeler needs to think in terms of global structure dependencies and has to provide accurate quantitative data for them" [Andrei2003]
- Feedback is the key word here, if X affects Y but X also depends on Y, their effects cannot be studied in isolation, a holistic approach must be taken to account for their interdependency
- Shortcomings of System Dynamics
 - Difficult to determine which portions of the problem should be modeled
 - Must understand things from an aggregated level
 - Hard to obtain accurate aggregated data, especially when there is no real system to base it on

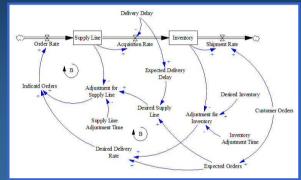


Image Source: http://www.control.hut.fi

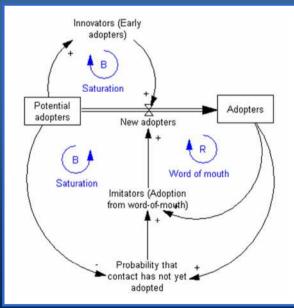
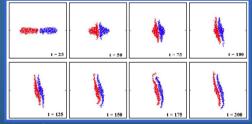


Image Source: http://www.wikimedia.org


GeorgiaInstitute of **Tech**nology

Agent-Based Models

- Many definitions of an agent
- Behavior defined at individual level, and aggregated behavior emerges from the interaction of individual behaviors
- "Agent-based models (ABM) are examples of complex adaptive systems, which can be characterized as those systems for which no model less complex than the system itself can accurately predict in detail how the system will behave at future times" [Bankes2002]
- Shortcomings of Agent-based Modeling
 - Hard to determine which portions of reality should be modeled
 - Which portions of the model can be characterized as independent stochastic events, and which have to represent reality more accurately?
 - Complete knowledge of every interaction at the individual levels may not be available
 - Playing it safe and attempting to model as much as possible can create a model that is too complicated to execute efficiently and may convolute the results to the point that understanding is impaired
 - Need to run very large number of simulations because the interactions diminish the effectiveness of the Central Limit Theorem [Cares2007]

Simple entities that interact with each other and the environment while obeying simple rules

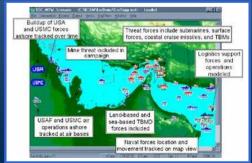


Image Source: www.spa.com

Extending Existing Techniques

- Models are an attempt to capture complexities of reality
- Some modeling approaches can capture certain complexities better than others
- Techniques have been extended, e.g.,
 - Buss & Sanchez, 2005 describes how DES can be used for spatially explicit models
 - Bounova & de Weck, 2006 describes a state-space-like augmented network model that can capture high-level dynamics

Extending techniques increases effort of model creation and V&V

Georgialnstitute

Spatial Complexity

Legend

N:NetworkSD: System DynamicsDE:Discrete-eventAB: Agent-based

New versus Integration

New Modeling Technique

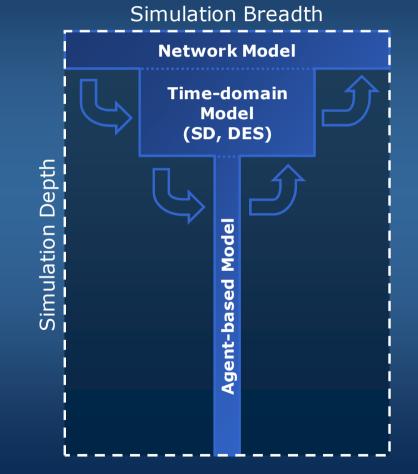
- Develop a new technique for modeling complex systems architectures
- Advantages
 - Tailor it to the complex problems described in this body of work
- Disadvantages
 - Disregards decades of advances in modeling
 - Time consuming
 - Limited resources, limited time
 - How do we obtain buy-in from M&S community

Integrate Existing Techniques

- Develop a process for using existing techniques to model complex systems
- Advantages
 - Leverages advances in the field of simulation and mathematics
- Disadvantages
 - Unproven approach
 - No standardized method for integrating modeling techniques

"If I have seen a little further it is by standing on the shoulders of Giants"

Isaac Newton


How do we Integrate the Candidate Techniques?

• Simulation Breadth

- What systems are modeled, the extent to which an architecture is represented in the model
- e.g., if modeling a sea base, do we include the ships traveling from CONUS to ISB, or just ISB to Sea Base?
- Simulation Depth

Georgia Institu

- Detail with which the characteristics are modeled
- e.g., if modeling a sea base, do we model how ships circumnavigate obstacles (decision making, spatially explicit information), or simply set a distance for their travel

Questions?