

Bounding the Human Within the System

Michael W. Mueller

Air Force Center for Systems Engineering

Michael.mueller@afit.edu

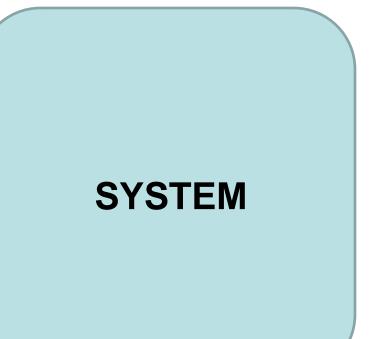
HUMAN IN SYSTEMS

THE HUMAN IS AN INTEGRAL ELEMENT OF EVERY SYSTEM

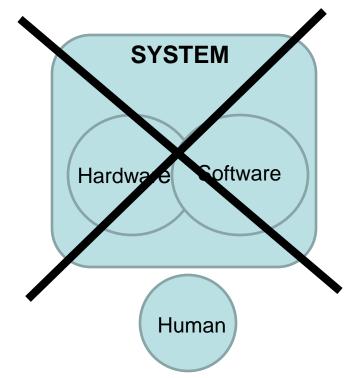
Human-Dominant Systems

Maintainers

✓ Lakes
 ✓ Parks
 ✓ State Boundary
 SF, 1851
 SF. 1852


Software-Dominant Systems

- Process of defining what is inside and what is outside of a system
 - Identifies system internal and external components
 - Helps focus development decisions and efforts



"Defining the boundaries of a system is critical but often neglected" – Dennis Buede, The Engineering Design of Systems

BOUNDING HUMAN OUTSIDE SYSTEM

- Enables attention to interfacing technology (hardware/software) of system with external components (e.g., the human)
- However, easy to get focused on hardware and software

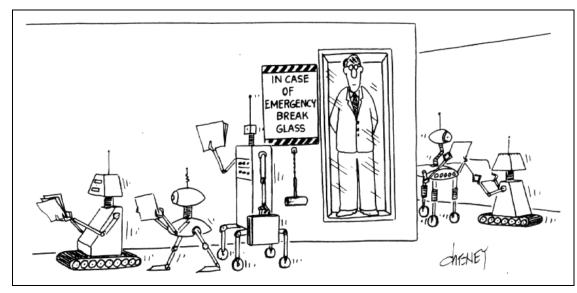
• Often neglect human in design and trade-off decisions, resulting in:

- Degraded system performance
- Costly modifications

BOUNDING HUMAN WITHIN SYSTEM



- Promotes consideration of human in conjunction with hardware and software in requirements development and system development and design decisions
- Requirements drive system functional, physical, operational, and interface architecture



Need to BOUND HUMAN WITHIN SYSTEM to better assure addressing essential human considerations in development & design of systems

- There is no such thing as an unmanned system
- The "human" in HSI includes all people who interact with the system:
 - users/customers
 - system owners
 - operators
 - maintainers
 - support personnel
 - trainers

• etc.

THE HUMAN IS AN INTEGRAL ELEMENT OF EVERY SYSTEM

Human Systems Integration (HSI):

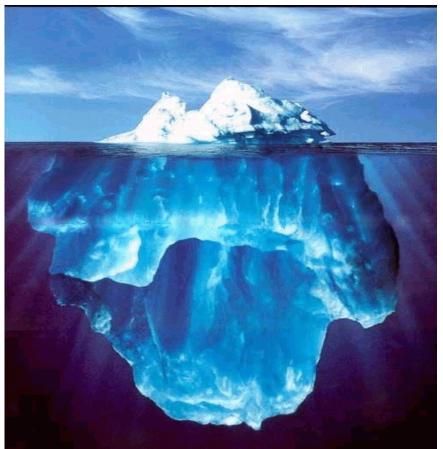
The interdisciplinary technical and management processes for integrating human considerations within and across all system elements; an essential enabler to systems engineering practice

Human Systems Integration Working Group, International Council on Systems Engineering (INCOSE), 2007

ENSURE THAT SYSTEMS, EQUIPMENT, FACILITIES:

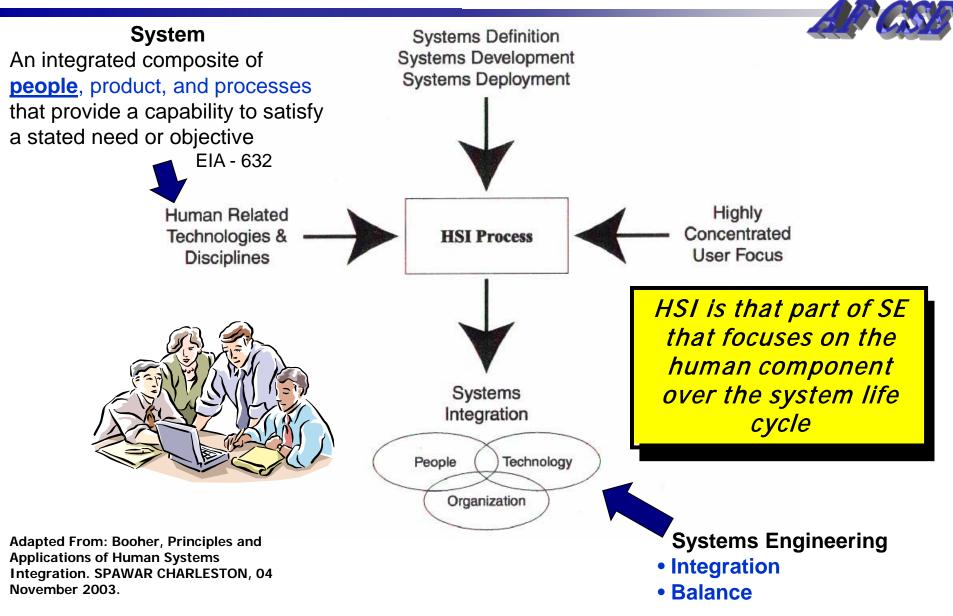
- Incorporate effective human-HW/SW interfaces
- Achieve the required levels of human performance
- Make economical demands upon personnel resources, skills, and training
- Minimize life-cycle costs
- Manage risk of loss or injury to personnel, equipment, or environment

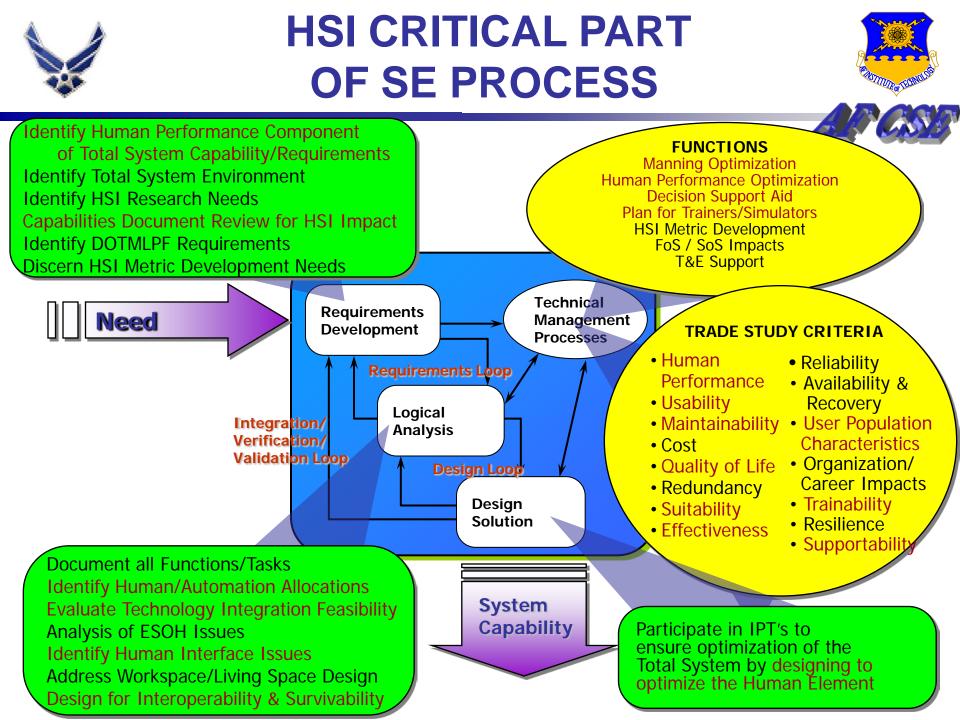
HSI brings human-centered disciplines and concerns into the SE process to improve overall system design and performance – BOUNDING THE HUMAN WITHIN SYSTEM PROMOTES A TOTAL SYSTEM APPROACH



IMPORTANCE OF HSI

DoD studies reveal:


- Over 90% of operating & support costs are determined early in development
- O&S costs are significantly HSI-related Source: GAO-03-57
- Critical to INCLUDE HSI EARLY in system concept development to realize greatest LIFE CYCLE COST SAVINGS



BOUNDING HUMAN WITHIN SYSTEM demands inclusion of HSI early

HSI KEY PART OF SYSTEMS ENGINEERING PROCESS

KEY HSI TENETS

- Initiate HSI Early
- Identify Issues and Plan Analysis
- Document/Crosswalk HSI Requirements
- Make HSI a Factor in Source Selection for Contracted Development Efforts
- Execute Integrated Technical Processes
- Conduct Proactive Tradeoffs

HSI most effective when HUMAN BOUNDED WITHIN SYSTEM from early concept development

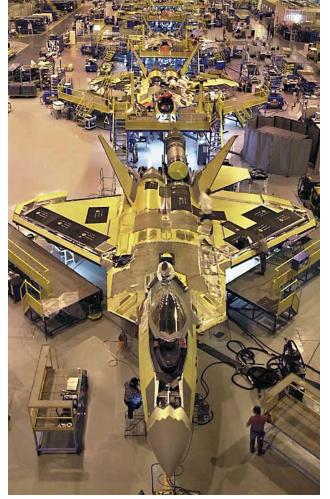
F-117 vs. F-22 STORY

– **F-117**

- No access panels originally designed into aircraft, so had to cut holes in structure to perform routine maintenance
- Eventually some access doors added to production F-117, but routine maintenance still not easy

– **F-22**

- HSI input from maintainers led to advanced door seal and associated technologies making aircraft much more maintainable
- Success in F-22 led to high level of HSI attention in F-35, balanced with rest of aircraft's stealth and operational characteristics

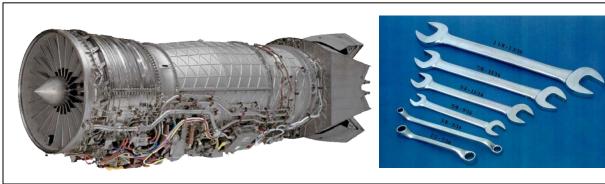

Source: New Concepts in Human Systems Integration, Potomac Institute for Policy Studies Report PIPS-08-01, March 2008

HSI makes good SE sense and can help to address emerging technology challenges in system development

F-22 HSI SUCCESS STORY

- Senior NCOs attached to every system and subsystem team
 - NCOs had to assess each full-scale mock-up before it was approved
- Minimized number of AF Specialty Codes and people needed to operate and maintain F-22
 - Reduced training requirements & life cycle costs
- Avionics operational flight program modified to be usable in ground training simulators without major redesign
 - Avoid "version skew"
- Composite skin designed to resist damage from maintenance activities
 - Reduced need for extra maintenance to fix induced damage

Source: New Concepts in Human Systems Integration, Potomac Institute for Policy Studies Report PIPS-08-01, March 2008


F-22 design gave strong consideration to HSI

F119-PW-100 ENGINE DESIGN HSI SUCCESS STORY

- F119-PW-100 Engine Design
 - **F-22**
 - "Blue Two" Visits Program Office and Industry Executives worked side-by-side with airmen performing normal maintenance
 - F119-PW-100 Chief Engineer Mandated:
 - All line replaceable units (e.g., Full Authority Digital Engine Controllers, Computerized Engine Diagnostic Units, and all pumps) would be mounted along the bottom half of the engine
 - Would be no more than 6 standard tools, available from Sears, needed to do external engine maintenance
 - F119-PW-100 engine is maintainer-friendly, while still giving highest engine performance in any fighter

Source: New Concepts in Human Systems Integration, Potomac Institute for Policy Studies Report PIPS-08-01, March 2008

F-119 engine design changes are direct result of CONDSIDERING THE HUMAN AS CRITICAL ELEMENT EARLY IN DESIGN AND DEVELOPMENT

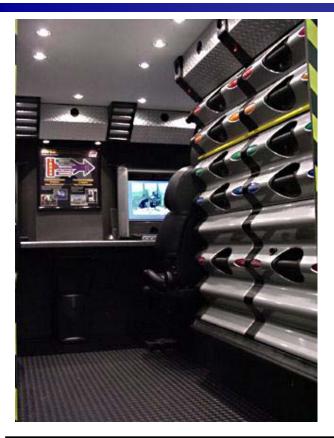
USS ZUMWALT (DDG-1000)

US Navy Destroyer

- Designed as multi-mission ship with a focus on land attack
- Specifically designed to require a smaller crew (142 vs. 330 on Spruance destroyers and 200 on Perry frigates)
- Reduced crew represents significant reduction in life cycle costs, since staffing is a major contributor to that cost on a warship

THAAD MISSILE SYSTEM TACTICAL OPERATIONS CENTER

Theater High-Altitude Area Defense (THAAD) Missile System, TOC – Mobile system to detect and eliminate enemy missiles


- Used standard office chairs on rollers
- Not enough leg room for larger soldiers
- Inside operator had to squeeze past foreground operator to enter/exit work station
- No storage for MOPP gear
- Operators bumped switches when putting on MOPP gear
- Took 2-3 days to assemble the TOC, starting from an empty vehicle

Source: "Pit Stop Engineering," presentation by Dennis Carlson, Jan 08

THAAD MISSILE SYSTEM TOC IMPROVED CONCEPT DESIGN

• SEATING:

- Replaced standard office chair with seat bolted in place (several notches to allow adjustment)
- Ample leg room for 1-99 percentile human

• MOPP GEAR:

- Stored in bins
- Seats rotated so soldiers could don gear in aisle without bumping equipment

• ASSEMBLY:

Using modular units, able to assemble
equipment in empty vehicle in just minutes
Modules color-, number-, and shape-coded for

ease of assembly

Greatly improved performance of system

- Significantly reduced set-up and maintenance time
- Savings estimated in billions

CONCLUSION

The HUMAN is an essential element of every system

• Key to successful HSI is INTEGRATION: Integration of human considerations with hardware & software considerations

Critical to BOUND HUMAN WITHIN SYSTEM from early concept development to enable informed decisions and optimize overall system success