



# SmallSat Conceptual Design Trade and Cost Modeling Tool

Dr. Deganit Armon Advatech Pacific, Inc.

> NDIA 12<sup>th</sup> Annual Systems Engineering Conference

Systems Engineering Development Environment

October 29, 2009

1



- Advatech Pacific, Inc.
  - John Carsten
  - Deganit Armon
  - Dana Sherrell
  - Michael Paisner
  - Mark Sutton
  - Steve Mysko
  - Paul Dorman
  - David Cantwell

### • MCR LLC

- Roy Smoker
- Daniel Feldman

- Air Force Research Laboratory, Space Vehicles Directorate
  - Brent Hamilton
  - Ross Wainwright
- Tecolote Research
  - Al Milton
  - John Trevillion
  - Darren Elliott
- Rocket Science Solutions, Inc.
  Jerry Sellers

## Advatech Company Overview

- Founded in 1995, Owned/Operated by Aerospace Engineers
- Locations in California, Arizona and Virginia
- R&D and Engineering Services
  - Integrated tool development and analysis
    - Space vehicle modeling
    - Launch vehicle design and cost
    - Hypersonic vehicles
    - Trajectory analysis
    - Range safety (Responsive Range Safety)
  - Software design and development
  - Engineering design and analysis
    - Structural
    - Thermal
    - Composites
    - Advanced space propulsion (electric / nuclear)
    - Tactical communications

**Traditional Design Approach** 

Early Design Challenges of High-Performance Complex Systems What is the current design process?



#### System Requirements

- Mission requirements
- Size, weight, power
- New technology insertion
- Performance
- Schedule





Solution to Early Design Challenges of High-Performance Complex Systems Integrated optimizing tools provide:







# Integrated Tool Suite Benefits

- Continuous trade study capability throughout the acquisition life cycle
- Iteratively model key parameters in the pre-system acquisition phase
  - ConOps
  - Performance
  - Cost
  - Schedule
  - Technology risk
- Responsive turnaround days, not weeks!
- System and subsystem trade analysis
- Continuous knowledge capture and update

Fundamental enabler for building the best performing system within the cost, schedule and technology constraints

## **Advatech Integrated Projects**

- Space vehicle design and cost (ACES-ISET)
- Advanced Cost Model (ACM)
- Launch vehicle design, operations and cost (IPAT)
- Hypersonic aeromechanics tool (IHAT, FPAT)
- Integrated Physics Based Cost / Risk Analysis Tool (ICAT)
- Composite Rotor Blade and Wing Structural Design Tool
- Component Integrated Modeling Simulation and Test Analysis Environment (CIMSTA)
- Naval Engineering Analysis Tool (NEAT)
- Virtual Satellite Integration Effort (VSIE)
- Small Satellite Launch Vehicle (SPRITE)
- Analytical Methods for Sandwich Core Termination
- Integrated High Payoff Rocket Propulsion Technology (IHPRPT)
- Aircraft Vulnerability Model (AVM)
- Combined Hall Effect Thruster Code (CHETC)
- Field Reverse Configuration (FRC) Thruster Model Orbit Transfer Vehicle System Model
- Highly Mobile Tactical Communications (HMTC)
- Integrated Solid Motor Analysis Tool (ISMAT)

# SmallSat Conceptual Design Tool

- Advanced Computational Engineering Simulator Integrated Space Analysis Tool (ACES-ISET)
- Customer: Air Force Research Laboratory, Space Vehicles Directorate, Kirtland AFB, NM
- Partners: Tecolote Research, MCR LLC, RSSI
- An integrated, multi-disciplinary engineering tool suite
  - Optimizes the design and cost of space vehicles
  - Models the space environment
  - Selection of launch vehicles and modeling launch operations
  - Perform mission planning trade studies
  - Visualization of results

### Integrated System and Cost Model (ISCM) - Tool Suite



Historical/Knowledge Database







- Cost modules fully integrated with design tools
- Cost estimating relationships based on
  historical data
  sub-system weights
  materials
- Historical data used to identify cost growth rates related to Technical Readiness Levels (TRL)
- Cost and schedule are related to TRL and system engineering milestones
- Built in risk estimating capabilities



### Cost growth incurred as technology matures



#### **Risk**

Triangular bounds (L,M,H) on weights drive S-Curves

Determined using FRISK, a deterministic risk analysis tool

S-Curves shift to the right with cost growth



### • Examples of Trade Studies

- Effect of subsystem reduction on total vehicle design
- Concept evaluations of proposed TacSat-5 concepts
- Cost impact of alternative TacSat-3 designs
- Launch vehicle selection and cost for satellite constellation
- Trajectory analysis for DSX alternative orbits
- Concept modeling for ORS modular satellite architectures



### Study highlights

Quantitative and qualitative data on the impact of decreasing Size, Weight and Power (SWAP) of individual subsystems on the overall space vehicle SWAP

Insight on space vehicle subsystems & components interaction

- Determined feasibility of reducing Space Vehicle mass by factor of 4
  - Only through cross-subsystem functionality
- Identified two major areas for future focused research
  - energy conversion
  - structural materials

Presented at the 6<sup>th</sup> Responsive Space Conference 2008

Expectations for return on research investments can be bound by quantifying system-level effects of a single breakthrough





Effect of subsystem 10x mass reduction on total space vehicle mass Each bar represents the effect of a single subsystem mass reduction

## **TacSat-5** Concept Evaluations

Study highlights

- Source solicitation evaluation
- Tiger Team approach



Solution to Early Design Challenges of High-Performance Complex Systems Integrated optimizing tools provide:



#### System Requirements

- Mission requirements
- Size, weight, power
- New technology insertion
- Performance
- Schedule





# **TacSat-5** Concept Evaluations

### Study highlights

- Source solicitation evaluation
- Tiger Team approach
- Thirteen concepts evaluated (classified and unclassified)
- Identified and quantified issues with concept proposals:
  - Projected costs that exceed available budget
  - Costs that assume payload design heritages not supported in proposal
  - High risk payloads based on low TRLs, long development schedules or payloads exceeding mass budget limits
- Identified and quantified issues with transitioning to operational version
- Demonstrated that some proposals/CONOPS
  - Contained inconsistent assumptions
  - Contained questionable assumptions that needed further investigation

Knowledge gained during conceptual design phase enabled decisions about designs and mission capabilities before a large investment was committed

## Alternative TacSat-3 Designs

### Study highlights

- Ongoing study
- Determine subsystem design changes needed to create an "operationalized" version of TacSat-3.
- Model and evaluate design modifications
  - Baseline design
  - Payload reductions
  - Increased mission length
  - Subsystem redesign with newer technologies
- Determine cost of design modifications
- Select and determine procurement costs of launch vehicles needed to launch a satellite constellation

Cost estimates for design modifications are affected by subsystem heritage and technology maturity.



#### • Selecting integration environment

- License cost
- Performance (speed)
- Portability (platforms)
- Flexibility and ease of development
- Scalability
- Automated parameter management (facilitates trade studies)
- User interface
- Selecting M&S tools to be integrated
  - Existing customer tools
  - Validation level (industry accepted)
  - OTS versus development
- Data availability and reliability
  - Proprietary data
  - Validation level
- Export control and use restrictions
- Managing customer expectations



### Integrated tools suites

- provide substantiated, traceable and reproducible results
- reveal interdependencies of cost, risk, schedule, and performance
- provide higher confidence in cost and schedule estimates
- enable better management of technology investment by decision makers

Concepts and processes are applicable to design domains beyond space