
CMMI V1.3 and Architecture Oct 2010

© 2010 Carnegie Mellon University 1

© 2010 Carnegie Mellon University

CMMI V1.3 and Architecture

Larry Jones
Mike Konrad

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213-2612

2
CMMI V1.3 and Architecture
© 2010 Carnegie Mellon University

Introductions

Instructor Introduction

Participant Introductions

(mechanics depends on size – individual or show of hands)

• name (if our group is small enough)

• company/position - or type of company (government, defense industry,
commercial industry, other)

• background – or job type (manager, technical, process group, other)

• software architecture background / systems architecture background

CMMI V1.3 and Architecture Oct 2010

© 2010 Carnegie Mellon University 2

3
CMMI V1.3 and Architecture
© 2010 Carnegie Mellon University

Tutorial Learning Outcomes

After completing this half-day tutorial, attendees should

• know the importance of architecture to the achievement of business, product,
or mission goals

• know that quality attributes have a dominant influence on a system’s
architecture

• be familiar with essential architecture-centric engineering activities and some
example methods

• know how to specify quality attributes meaningfully through scenarios

• be able to identify where architecture-centric activities and work products are
described in CMMI V1.3

• appreciate how to interpret the new architecture-centric material in CMMI
V1.3

• know where to find out more about architecture-centric engineering practices

4
CMMI V1.3 and Architecture
© 2010 Carnegie Mellon University

Conventions & Caveats for the Tutorial

The coverage of architecture-centric practices in CMMI V1.3 are not

restricted to software;

• however, the tutorial providers are most conversant with that domain and thus
so is this tutorial.

CMMI V1.3 includes updates to CMMI for Acquisition and CMMI for

Services. Our focus in the tutorial will be on CMMI for Development

but we will often adopt the shorthand “CMMI V1.3.”

CMMI uses the term “product” to refer to what is delivered to the

customer or end-user. In this tutorial, we will often use the term

“system” to refer to the product.

This tutorial cannot completely convey everything you might like to learn

about architecture-centric engineering.

• References are provided at the end for you to learn more.

CMMI V1.3 and Architecture Oct 2010

© 2010 Carnegie Mellon University 3

5
CMMI V1.3 and Architecture
© 2010 Carnegie Mellon University

Expected Background of Participants

Participants must have an understanding of the basics of CMMI models.

• This tutorial is not an introduction to CMMI.

• It is not a substitute for upgrade training.

Familiarity with system and software design is useful, but not required.

6
CMMI V1.3 and Architecture
© 2010 Carnegie Mellon University

Topics to be Covered

CMMI V1.3 – Modern Engineering Practices

Introduction to Architecture

Essential Architecture Practices

Where Are the Architecture-Centric Practices in CMMI V1.3?

Summary

Questions and Answers

There are hands-on exercises to give you a grounding in some key

concepts.

CMMI V1.3 and Architecture Oct 2010

© 2010 Carnegie Mellon University 4

7
CMMI V1.3 and Architecture
© 2010 Carnegie Mellon University

Presentation Outline

CMMI V1.3 – Context for modern engineering practices changes

Introduction to Architecture

Essential Architecture Practices

Where Are the Architecture-Centric Practices in CMMI V1.3?

Summary

Questions and Answers

8
CMMI V1.3 and Architecture
© 2010 Carnegie Mellon University

Modern Development Practices in CMMI - The
Problem - 1
Much of the engineering content of DEV V1.2 is ten years old.

As DEV was a starting point for the other two constellations, no V1.2

model adequately addresses “modern” engineering approaches.

For example, RD SG 3 and RD SP 3.2 both emphasize functionality and

not non-functional requirements (CMMI-SVC SSD SP 1.3 also does

too).

Also, Engineering and other PAs rarely mention the following concepts:

• Quality attributes

• Allocation of product capabilities to release increments

• Product lines

• System of systems

• Architecture-centric development practices

• Technology maturation (and obsolescence)

• Agile methods

CMMI V1.3 and Architecture Oct 2010

© 2010 Carnegie Mellon University 5

9
CMMI V1.3 and Architecture
© 2010 Carnegie Mellon University

Modern Development Practices in CMMI - The
Problem - 2
The slides that follow portray where we should be today relative to

architecture-centric practices – as opposed to how they were

portrayed in CMMI V1.2.

Towards the end of today’s half-day tutorial, we will revisit how CMMI

Version 1.3 addresses these and other modern development

practices.

10
CMMI V1.3 and Architecture
© 2010 Carnegie Mellon University

Architecture is Important

The quality and longevity of a software-reliant system is largely

determined by its architecture.

In recent studies by OSD, the National Research Council, NASA, and

the NDIA, architectural issues are identified as a systemic cause of

software problems in DoD systems.

CMMI V1.3 and Architecture Oct 2010

© 2010 Carnegie Mellon University 6

11
CMMI V1.3 and Architecture
© 2010 Carnegie Mellon University

People are Serious About Architecture

“Software Architect” was identified by CNN Money.com as the #1 “Best

Job in America.” (Oct 2010)1

The US Army has mandated that all Program Executive Offices appoint

a Chief Software Architect. (May 2009)2

1. http://money.cnn.com/magazines/moneymag/bestjobs/2010/snapshots/1.html

2. Memo by LTG N. Ross Thompson, Mil Dept of ASA (ALT) on May 26, 2009.

12
CMMI V1.3 and Architecture
© 2010 Carnegie Mellon University

“Every system has an architecture…

…encompassing the key abstractions and mechanisms that define that

system's structure and behavior… In every case - from idioms to

mechanisms to architectures - these patterns are either

intentional

or

accidental”

- Grady Booch in the Preface to Handbook of Software Architecture

CMMI V1.3 and Architecture Oct 2010

© 2010 Carnegie Mellon University 7

13
CMMI V1.3 and Architecture
© 2010 Carnegie Mellon University

Architecture and Strategy

An Intentional Architecture is the

embodiment of your business strategy

• Intentional Architecture links technology
decisions to business goals

An Accidental Architecture

limits strategy options
• Accidental Architecture

becomes your de facto
strategy

14
CMMI V1.3 and Architecture
© 2010 Carnegie Mellon University

Presentation Outline

CMMI V1.3 – Context for modern engineering practices changes

Introduction to Architecture

Essential Architecture Practices

Where Are the Architecture-Centric Practices in CMMI V1.3?

Summary

Questions and Answers

CMMI V1.3 and Architecture Oct 2010

© 2010 Carnegie Mellon University 8

15
CMMI V1.3 and Architecture
© 2010 Carnegie Mellon University

DoD Systems are Increasingly Complex…

16
CMMI V1.3 and Architecture
© 2010 Carnegie Mellon University

…Systems of Systems (SoS) even more so

More and more, software is the integrating element in all

manner of systems…

CMMI V1.3 and Architecture Oct 2010

© 2010 Carnegie Mellon University 9

17
CMMI V1.3 and Architecture
© 2010 Carnegie Mellon University

Coping with System/Software Complexity is a
Must

2008-2009 Interviews with Army PEOs

• Relationship between system engineering and
software engineering is driving system complexity

• Example: Army Software Blocking/Network
Capability Sets - decade-long attempt to horizontally
integrate Battle Command software across brigade
elements

2009 NASA Study

• Software complexity leads to system and operational
complexity (and increases risk)

2009 MIT Study

• Software causes systems to be become
“interactively complex” (intellectually unmanageable)

18
CMMI V1.3 and Architecture
© 2010 Carnegie Mellon University

but good architecting skills are not common”

Architecture-Centric Practices are Key…

Defense Science Board (1994 & 2000)

• Software architecture techniques can reduce cost and cycle times

• Architecture is “a central theme for software reuse, product lines, and greater
exploitation of commercial technology and practices”

Army Workshop on Weapon Software Upgrade Programs (2001)

• Architecture is “a key technical focus for the system”

• Architecture is critical in determining the future ability to upgrade the system

• In 2008, GAO testimony noted similar findings for DoD business systems

NASA (2009)

• “Good software architecture is the most important defense against incidental
complexity in software designs,

CMMI V1.3 and Architecture Oct 2010

© 2010 Carnegie Mellon University 10

19
CMMI V1.3 and Architecture
© 2010 Carnegie Mellon University

…But Practices Haven’t Kept Up

DoD Tri-Service Assessment Initiative (2003)

• Review of 21 DoD program assessments

– poor software architecture practices are one of the
systemic causal factors of software-reliant systems issues

SEI surveys and interviews of Army PMs and PEOs (2004 & 2005)

• PMs/PEOs felt prime contractors’ software architecture
abilities were only about average

– Yet, they also felt government program office staffs were
not sufficiently skilled to evaluate software architectures

SEI analysis of results from 18 architecture evaluations (2006)

• >50% of the programs had significant program risks driven by
lack of architecture training/tools and poor architecture planning

• ~2/3 of risks discovered were risks of omission

– e.g., architectural decisions either not made or not captured

20
CMMI V1.3 and Architecture
© 2010 Carnegie Mellon University

Fixing this Sounds Expensive!

Compared to what?

• Over-committing because you don’t have a blueprint
for the whole system?

• Inefficiency from inability to coordinate work?

• Late rework when defects found in test and
integration?

• Delivering late and over budget?

• Developing a failed product that doesn’t meet
stakeholder’s needs?

CMMI V1.3 and Architecture Oct 2010

© 2010 Carnegie Mellon University 11

21
CMMI V1.3 and Architecture
© 2010 Carnegie Mellon University

Architecture is About Structure and Decisions

Structures result from decisions

• Business / mission goals provide a
reasoned basis for decisions.

• Each decision is a tradeoff that
enables something and precludes
other things.

• Tradeoffs are driven by quality
attribute requirements.

This is true regardless of the domain

– commercial or defense.

22
CMMI V1.3 and Architecture
© 2010 Carnegie Mellon University

Class Exercise 1

CMMI V1.3 and Architecture Oct 2010

© 2010 Carnegie Mellon University 12

23
CMMI V1.3 and Architecture
© 2010 Carnegie Mellon University

Architecture-centric engineering enables the ongoing
cost-effective achievement of system-related
business and mission goals.

Value Proposition for Architecture-Centric
Engineering

• Early identification and mitigation of design risks result in fewer downstream,
costly problems and cost savings in integration and test.

• Sound structure analyses provide objective confidence for achieving system
quality.

• Predictable system quality supports the achievement of business and mission
goals, which translates into competitive advantage.

• Appropriate flexibility enables cost-effective system evolution.

24
CMMI V1.3 and Architecture
© 2010 Carnegie Mellon University

The right architecture paves the way for system success.
The wrong architecture usually spells some form of disaster.

Why Is Software Architecture Important?

Represents earliest
design decisions

• hardest to change
• most critical to get right
• communication vehicle

among stakeholders

First design artifact
addressing

• performance
• modifiability
• reliability
• security

Key to systematic reuse
• transferable,

reusable abstraction

Key to system evolution
• manage future uncertainty
• assure cost-effective agility

CMMI V1.3 and Architecture Oct 2010

© 2010 Carnegie Mellon University 13

25
CMMI V1.3 and Architecture
© 2010 Carnegie Mellon University

Software Architecture and Development and
Acquisition Risk
Risk mitigation early in the life cycle is key.

• The software architecture is an early life cycle artifact.

• Mid-course correction is possible before great investment.

• Risks don’t become problems that have to be addressed during integration
and test.

26
CMMI V1.3 and Architecture
© 2010 Carnegie Mellon University

Agile Architecture = Responsiveness

Architecture-centric engineering and an agile development approach are

not at odds.

Agile development approaches enable you to

• Take on large projects and initiatives

• Break them into smaller chunks (iterations)

• Manage risk

– Execute-Learn-Feedback-Improve

Agile Architecture provides the blueprint for your iterations

• Enable efficient incremental development

• Minimize technical debt

• Early analysis of qualities like performance and availability

• Efficiently address global qualities like security

CMMI V1.3 and Architecture Oct 2010

© 2010 Carnegie Mellon University 14

27
CMMI V1.3 and Architecture
© 2010 Carnegie Mellon University

Common Symptoms Stemming From
Architectural Deficiencies

Operational
• Communication bottlenecks under various load conditions in a system or throughout a

system of systems (SoS)
• Systems that hang up or crash; portions that need rebooting too often
• Difficulty synching up after periods of disconnect and resume operations
• Judgment by users that system is unusable for variety of reasons
• Database access sluggish and unpredictable

Developmental
• Integration schedule blown, difficulty identifying root causes of problems
• Proliferation of patches and workarounds during integration and test
• Integration of new capabilities taking longer than expected, triggering breaking points

for various resources
• Significant operational problems ensuing despite passage of integration and test
• Anticipated reuse benefits not being realized

28
CMMI V1.3 and Architecture
© 2010 Carnegie Mellon University

Sample Issues Detectable From Architectural
Decisions

Availability:

• Having a single point of failure

• Having no availability mechanisms

• Using an infrastructure that does not
support availability mechanisms

Performance:

• Not knowing performance
requirements

• Failure to meet performance
requirements

– Not performing any performance
modeling or prototyping

– Unfamiliarity with infrastructure
choices

– Not using known performance
mechanisms

Security:

• No support for security

• Not using known mechanisms to support
security goals

Modifiability:

• Allocating functionality in a way that
jeopardizes portability

• Not supporting the addition and deletion of
different devices

• Lack of attention to potential growth paths

Integration:

• Problems with migrating legacy systems

• Lack of uniformity in key areas

CMMI V1.3 and Architecture Oct 2010

© 2010 Carnegie Mellon University 15

29
CMMI V1.3 and Architecture
© 2010 Carnegie Mellon University

This is What Happens

without careful architectural design.

And so it is with software.

FOR

SALE

30
CMMI V1.3 and Architecture
© 2010 Carnegie Mellon University

Without Effective Software Architecture
Practices
…. you get poorly designed software architectures.

Poorly designed software architectures result in

• Greatly inflated integration and test costs

• Inability to sustain systems in a timely and affordable way

• Lack of system robustness

• Undesired, disparate behaviors at the system and at the system-of-systems
levels

• In the worst case, product or project cancellation

• In all cases, failure to best support the war fighter

CMMI V1.3 and Architecture Oct 2010

© 2010 Carnegie Mellon University 16

31
CMMI V1.3 and Architecture
© 2010 Carnegie Mellon University

A Warning (PERMISSION REQUESTED)

“Architecture” is a very overloaded word.

• All the good words are taken.

• We will explain some common uses of the term and how they differ.

32
CMMI V1.3 and Architecture
© 2010 Carnegie Mellon University

What Is A Software Architecture?

Informally, software architecture is the blueprint describing
the software structure of a system.

CMMI V1.3 and Architecture Oct 2010

© 2010 Carnegie Mellon University 17

33
CMMI V1.3 and Architecture
© 2010 Carnegie Mellon University

Formal Definition

“The software architecture of a program or computing

system is the structure or structures of the system, which

comprise the software elements, the externally visible

properties of those elements, and the relationships

among them.”1

1 Bass, L.; Clements; P. & Kazman, R. Software Architecture in Practice, Second Edition. Boston, MA: Addison-Wesley, 2003.

34
CMMI V1.3 and Architecture
© 2010 Carnegie Mellon University

Implications of Our Definition

Software architecture is an abstraction of a system.

Software architecture defines the properties of elements.

Systems can and do have many structures.

Every software-intensive system has an architecture.

Just having an architecture is different from having an architecture that
is known to everyone.

If you don’t develop an architecture, you will get one anyway –
and you might not like what you get!

CMMI V1.3 and Architecture Oct 2010

© 2010 Carnegie Mellon University 18

35
CMMI V1.3 and Architecture
© 2010 Carnegie Mellon University

Structures and Views - 1

One house, many views

No single view accurately represents the house.

No single view can be used to build the house.

Although these views are pictured differently, and each has

different properties, all are related. Together, they describe the

architecture of the house.

Carpentry view
Plumbing view
Electrical view
Ductwork view

36
CMMI V1.3 and Architecture
© 2010 Carnegie Mellon University

A human body

comprises multiple

structures.

a static view of

one human

structure

a dynamic view

of that structure

Structures and Views - 2

One body has many structures, and those structures have many
views. So it is with software.

CMMI V1.3 and Architecture Oct 2010

© 2010 Carnegie Mellon University 19

37
CMMI V1.3 and Architecture
© 2010 Carnegie Mellon University

Enterprise Architecture

Enterprise architecture is a means for describing business structures

and the processes that connect them.1

• Describes the flow of information and activities between various groups within
the enterprise that accomplish some overall business activity

Software and its design are not typically addressed explicitly in an

enterprise architecture.

1 Zachman, John A., "A Framework for Information Systems Architecture." IBM Systems Journal, 26, 3 (1987): 276-292.

38
CMMI V1.3 and Architecture
© 2010 Carnegie Mellon University

System Architecture

A system architecture describes the elements and interactions of a

complete system including its hardware elements and its software

elements.

System Architecture: “The fundamental and unifying system structure

defined in terms of system elements, interfaces, processes,

constraints, and behaviors.”1

Systems Engineering is a design and management discipline useful in

designing and building large, complex, and interdisciplinary systems.2

1 Rechtin, E. Systems Architecting: Creating and Building Complex Systems. Englewood Cliffs, NJ : Prentice-Hall,

1991.

2 International Council On Systems Engineering (INCOSE), Systems Architecture Working Group, 1996.

CMMI V1.3 and Architecture Oct 2010

© 2010 Carnegie Mellon University 20

39
CMMI V1.3 and Architecture
© 2010 Carnegie Mellon University

Where Does Software Architecture Fit?

Enterprise architecture and system architecture provide an environment

in which software lives.

• Both provide requirements and constraints to which software architecture
must adhere.

• Both are affected by the properties of the software architecture.

• Elements of both are likely to contain software architecture.

• Neither substitutes for or obviates a software architecture.

There is a mutual influence and interaction between software, system,

and enterprise architectures.

In a large, complex, software-reliant system both software and system

architectures are critical for ensuring that the system meets its

business and mission goals.

40
CMMI V1.3 and Architecture
© 2010 Carnegie Mellon University

What About System of Systems?

Each software-intensive system in a system of systems (SoS) has

system and software architectures.

The system of systems has an architecture where the elements are

themselves the software architectures of the individual systems.

Software architecture is even more important in an SoS context, not

less.

CMMI V1.3 and Architecture Oct 2010

© 2010 Carnegie Mellon University 21

41
CMMI V1.3 and Architecture
© 2010 Carnegie Mellon University

Does DoDAF Address Software Architecture?

Unfortunately, no.

• DoDAF views are required

• software architecture views are not

The Department of Defense Architecture Framework (DoDAF) describes

an “architecture” for a large-scale system or system-of-systems.

DoDAF uses the concept of views of a system

• operational view (OV) – participant relationships and information needs

• system (SV) – relates capabilities and characteristics to operational
requirements

• technical (TV) – prescribes standards and conventions

• all (AV)

DoDAF views were developed for different purposes and do not address

software architecture.

42
CMMI V1.3 and Architecture
© 2010 Carnegie Mellon University

Presentation Outline

CMMI V1.3 – Context for modern engineering practices changes

Introduction to Architecture

Essential Architecture Practices

Where Are the Architecture-Centric Practices in CMMI V1.3?

Summary

Questions and Answers

CMMI V1.3 and Architecture Oct 2010

© 2010 Carnegie Mellon University 22

43
CMMI V1.3 and Architecture
© 2010 Carnegie Mellon University

What is Architecture-Centric
Engineering?

Architecture-Centric Engineering (ACE) is the

discipline of using architecture as the focal point for

performing ongoing analyses to gain increasing

levels of confidence that systems will support their

missions.

The SEI ACE Initiative
develops principles, methods,
foundations, techniques,
tools, and materials in
support of creating, fostering,
and stimulating widespread
transition of the ACE
discipline.

Architecture is of enduring importance because it is

the right abstraction for performing ongoing analyses

throughout a system’s lifetime.

44
CMMI V1.3 and Architecture
© 2010 Carnegie Mellon University

There are interactions among these types of systems.

The behavior of all these systems is largely determined by their structure.

The Variety of Software-Reliant Systems

Predict and control behavior Assure and bound behavior

Coupling to organizational structure and practices increases

Ultra-large-scale
systems
webs of software-
reliant systems,

people, economies,

and cultures

Embedded
systems

software
embedded in
hardware devices

Stand-alone
systems

software
applications

Software
product
lines

families of
similar
systems

Systems of
systems

federations of
independent
systems

Architecture-centric engineering addresses all types and scales of systems.

CMMI V1.3 and Architecture Oct 2010

© 2010 Carnegie Mellon University 23

45
CMMI V1.3 and Architecture
© 2010 Carnegie Mellon University

IMPLEMENT AND EVOLVE

SATISFY

ACE Design and Analysis

DESIGN IMPLEMENT

SATISFY CONFORM

ARCHITECTURE SYSTEM
BUSINESS AND
MISSION GOALS

46
CMMI V1.3 and Architecture
© 2010 Carnegie Mellon University

Principles of ACE

1. Regardless of scale, architecture is the appropriate abstraction for

reasoning about business/mission goal satisfaction.

2. Quality attributes have a dominant influence on a system’s

architecture.

3. Architectural prescriptions must be demonstrably satisfied by the

implementation.

CMMI V1.3 and Architecture Oct 2010

© 2010 Carnegie Mellon University 24

47
CMMI V1.3 and Architecture
© 2010 Carnegie Mellon University

Architecture – A Bridge to Goal Satisfaction

All design involves

tradeoffs.

Lacking mission and

business drivers, the

architect has to make

assumptions about

priorities.

Given well-stated

mission and business

drivers, the architect

has a basis for

knowing the priorities

among tradeoffs.

A good architectural

representation should

have

• sufficient detail to reason
about mission and
business goal satisfaction

• sufficient abstraction for a
relatively small number of
architects to conceptually
understand the system

• sufficient detail to
appropriately constrain
implementation.

48
CMMI V1.3 and Architecture
© 2010 Carnegie Mellon University

Principles of ACE

1. Regardless of scale, architecture is the appropriate abstraction for

reasoning about business/mission goal satisfaction.

2. Quality attributes have a dominant influence on a system’s

architecture.

3. Architectural prescriptions must be demonstrably satisfied by the

implementation.

CMMI V1.3 and Architecture Oct 2010

© 2010 Carnegie Mellon University 25

49
CMMI V1.3 and Architecture
© 2010 Carnegie Mellon University

Software System Development

Functional
Software

Requirements

If function were all
that mattered, any
monolithic software
would do, ..but
other things
matter…

• Modifiability

• Interoperability

• Availability

• Security

• Predictability

• Portability

The important quality attributes and their characterizations are key.

has these qualities

analysis, design, development, evolution

Quality

Attribute Drivers

Software

Architecture
Software

The Non-functional
Requirements

50
CMMI V1.3 and Architecture
© 2010 Carnegie Mellon University

Quality Attribute Requirements

Quality attributes include

• Performance

• Availability

• Interoperability

• Modifiability

• Usability

• Security

• Etc.

Quality attribute requirements stem from business and mission goals.

Key quality attributes need to be characterized in a system-specific way.

Otherwise, they are not operational.

CMMI V1.3 and Architecture Oct 2010

© 2010 Carnegie Mellon University 26

51
CMMI V1.3 and Architecture
© 2010 Carnegie Mellon University

Users Need Both Functions and Qualities

Required capability

Low learning threshold

Ease of use

Predictable behavior

Dependable service

Timely response

Timely throughput

Protection from unintended intruders and viruses

……

Software system/mission goals should address user needs.

User needs often translate to quality attribute requirements.

Scenarios are a powerful way to characterize quality attributes and

represent user and other stakeholder views.

52
CMMI V1.3 and Architecture
© 2010 Carnegie Mellon University

Specifying Quality Attributes

Quality attributes are rarely captured effectively in requirements

specifications; they are often vaguely understood and weakly

articulated.

Just citing the desired qualities is not enough; it is meaningless to say

that the system shall be “modifiable” or “interoperable” or “secure”

without details about the context.

The practice of specifying quality attribute scenarios can remove this

imprecision and allows desired qualities to be evaluated meaningfully.

A quality attribute scenario is a short description of an interaction

between a stakeholder and a system and the response from the

system.

CMMI V1.3 and Architecture Oct 2010

© 2010 Carnegie Mellon University 27

53
CMMI V1.3 and Architecture
© 2010 Carnegie Mellon University

Parts of a Quality Attribute Scenario

Response

RESPONSE
MEASURE

ENVIRONMENT

Stimulus

SOURCE

Artifact:

Process, Storage,
Processor,

Communication

54
CMMI V1.3 and Architecture
© 2010 Carnegie Mellon University

Example Quality Attribute Scenario

Response

RESPONSE
MEASURE

under 5
seconds

ENVIRONMENT

Database under
peak load

Stimulus

SOURCE

Remote user

Artifact:

Process, Storage,
Processor,

Communication

A “performance” scenario: A remote user requests a data base

report under peak load and receives it in under 5 seconds.

CMMI V1.3 and Architecture Oct 2010

© 2010 Carnegie Mellon University 28

55
CMMI V1.3 and Architecture
© 2010 Carnegie Mellon University

Class Exercise 2

56
CMMI V1.3 and Architecture
© 2010 Carnegie Mellon University

Principles of ACE

1. Regardless of scale, architecture is the appropriate abstraction for

reasoning about business/mission goal satisfaction.

2. Quality attributes have a dominant influence on a system’s

architecture.
• Quality attribute requirements stem from business and mission goals.
• Key quality attributes need to be characterized in a system-specific way.
• Scenarios are a powerful way to characterize quality attributes and

represent stakeholder views.

3. Architectural prescriptions must be demonstrably satisfied by the

implementation.

CMMI V1.3 and Architecture Oct 2010

© 2010 Carnegie Mellon University 29

57
CMMI V1.3 and Architecture
© 2010 Carnegie Mellon University

Principles of ACE

1. Regardless of scale, architecture is the appropriate abstraction for

reasoning about business/mission goal satisfaction.

2. Quality attributes have a dominant influence on a system’s

architecture.

3. Architectural prescriptions must be demonstrably satisfied by the

implementation.

58
CMMI V1.3 and Architecture
© 2010 Carnegie Mellon University

Typical Software Development Paradigm

Operational descriptions
High level functional requirements

Systems specifications

A specific system architecture
Software architecture emerges

Detailed software design
and Implementation

a miracle occurs

Quality attributes are rarely
captured in requirements
specifications

Often vaguely understood

Often weakly articulated

How do you know if
the architecture
is fit for purpose?

another miracle occurs

CMMI V1.3 and Architecture Oct 2010

© 2010 Carnegie Mellon University 30

59
CMMI V1.3 and Architecture
© 2010 Carnegie Mellon University

Architecture-Centric Activities

Architecture-centric activities include the following:

• creating the business case for the system

• understanding the requirements

• creating and/or selecting the architecture

• documenting and communicating the architecture

• analyzing or evaluating the architecture

• implementing the system based on the architecture

• ensuring that the implementation conforms to the architecture

• evolving the architecture so that it continues to meet business and

mission goals

60
CMMI V1.3 and Architecture
© 2010 Carnegie Mellon University

Some SEI Techniques, Methods, and Tools
creating the business case for the system

understanding the requirements Quality Attribute Workshop (QAW)
Mission Thread Workshop (MTW)

creating and/or selecting the architecture Attribute-Driven Design (ADD)
and ArchE

documenting and
communicating the architecture

Views and Beyond Approach; AADL

analyzing or evaluating the architecture Architecture Tradeoff Analysis Method
(ATAM); SoS Arch Eval; Cost Benefit
Analysis Method (CBAM); AADL

implementing the system based on the
architecture

ensuring that the implementation conforms to
the architecture

ARMIN

evolving the architecture so that it continues to
meet business and mission goals

Architecture Improvement Workshop
(AIW) and ArchE

ensuring use of effective architecture
practices

Architecture Competence Assessment

CMMI V1.3 and Architecture Oct 2010

© 2010 Carnegie Mellon University 31

61
CMMI V1.3 and Architecture
© 2010 Carnegie Mellon University

Building the Business Case for the System

How to do this is beyond the scope of this tutorial.

Some common business / mission drivers for systems include

• Reduce total cost of ownership

• Improve capability/quality of system

• Improve market position

• Support improved business processes

• Improve confidence in and perception of system

Results gleaned from

• 25 architecture evaluations

– 18 government systems, 7 commercial systems

• 190 distinct business goals

Kazman & Bass, Categorizing Business Goals for Software Architectures, CMU/SEI-2005-TR-021

http://www.sei.cmu.edu/reports/05tr021.pdf

62
CMMI V1.3 and Architecture
© 2010 Carnegie Mellon University

Understanding the Requirements –
The SEI’s Quality Attribute Workshop

QAW Steps

1. QAW Presentation and Introductions

2. Business/Programmatic Presentation

3. Architectural Plan Presentation

4. Identification of Architectural Drivers

5. Scenario Brainstorming

6. Scenario Consolidation

7. Scenario Prioritization

8. Scenario Refinement

The purpose of the SEI Quality Attribute Workshop (QAW) is to discover,

early in the life cycle, the driving quality attribute requirements of a

software-intensive system.

Barbacci, et al., Quality Attribute Workshops (3rd Ed.), CMU/SEI-2003-TR-016

http://www.sei.cmu.edu/library/abstracts/reports/03tr016.cfm

CMMI V1.3 and Architecture Oct 2010

© 2010 Carnegie Mellon University 32

63
CMMI V1.3 and Architecture
© 2010 Carnegie Mellon University

An Approach to Architecture Creation

The Attribute-Driven Design (ADD) method is an approach to defining a

software architecture by basing the design process on the quality

attribute requirements of the system.

64
CMMI V1.3 and Architecture
© 2010 Carnegie Mellon University

Class Exercise 3

CMMI V1.3 and Architecture Oct 2010

© 2010 Carnegie Mellon University 33

65
CMMI V1.3 and Architecture
© 2010 Carnegie Mellon University

Creating the Architecture

How to do this is beyond the scope of this tutorial.

Part of the ADD approach is to pick architectural patterns and tactics

that address particular quality attributes.

Patterns represent a packaging of a number of design decisions we

refer to as tactics.

Each tactic is a design option available to the architect.

A pattern typically employs several different tactics to promote various

quality attributes.

Example: Tactics to influence availability (keep faults from becoming

errors) include

– Fault Detection

– Fault Recovery

– Fault Prevention

66
CMMI V1.3 and Architecture
© 2010 Carnegie Mellon University

Summary of Availability Tactics

Availability

Fault
Detection

• Ping/Echo
• Heartbeat
• Exception

Fault
Recovery
Preparation
and Repair

• Voting
• Active

Redundancy
• Passive

Redundancy
• Spare

Fault Recovery
and
Reintroduction

Fault
Prevention

• Shadow Operation
• State
Resynchronization
• Checkpoint/

Rollback

• Removal from
Service

• Transactions
• Process

Monitor

Fault

Fault
masked
or repair

made

CMMI V1.3 and Architecture Oct 2010

© 2010 Carnegie Mellon University 34

67
CMMI V1.3 and Architecture
© 2010 Carnegie Mellon University

Other Tactics

There are tactics for

• modifiability

• performance

• security

• testability

• usability

See Software Architecture in Practice for a more complete treatment of

the subject.

68
CMMI V1.3 and Architecture
© 2010 Carnegie Mellon University

Analyzing the Architecture – SEI’s Architecture
Tradeoff Analysis Method® (ATAM®)
The ATAM is an architecture evaluation method that focuses on multiple

quality attributes.

Architectural
Decisions

Scenarios
Quality

Attributes

Architectural
Approaches

Business
Drivers

Software
Architecture

impacts

distilled
into

Risks

Sensitivity Points

Tradeoffs

Non-Risks

Analysis

Risk Themes

CMMI V1.3 and Architecture Oct 2010

© 2010 Carnegie Mellon University 35

69
CMMI V1.3 and Architecture
© 2010 Carnegie Mellon University

ATAM evaluations are conducted in four phases.

ATAM Phases

Phase 0:

Partnership

and

Preparation

Phase 1:

Initial

Evaluation

Phase 2:

Complete

Evaluation

Phase 3:

Follow-Up

Duration: varies

Meeting: primarily

phone, email

Duration: 1.5 - 2 days each for

Phase 1 and Phase 2

Meeting: typically conducted

at customer site

Duration: varies

Meeting: primarily

phone, email

70
CMMI V1.3 and Architecture
© 2010 Carnegie Mellon University

ATAM Evaluative Phases (1 & 2)

Reporting

Testing

1. Present the ATAM

2. Present business drivers

3. Present architecture

4. Identify architectural approaches

5. Generate quality attribute utility tree

6. Analyze architectural approaches

7. Brainstorm and prioritize scenarios

8. Analyze architectural approaches

9. Present results

Presentation

Investigation

and Analysis

P
h

a
s
e
 1

Phase 2 = Recap of Phase 1 plus

CMMI V1.3 and Architecture Oct 2010

© 2010 Carnegie Mellon University 36

71
CMMI V1.3 and Architecture
© 2010 Carnegie Mellon University

Documenting the Software Architecture

Architecture documentation establishes the set of design decisions that

must be made along the way to establishing and maintaining the

architecture.

An architecture is a multidimensional construct, too involved to be seen

all at once.

Recall: systems are composed of many structures.

A view is a representation of a structure.

We use views to manage complexity by separating concerns.

72
CMMI V1.3 and Architecture
© 2010 Carnegie Mellon University

View-Based Documentation

Views give us our basic principle of architecture documentation

The choice of views used depends on the nature of the system

and the stakeholder needs.

Software
Architecture
for System

XYZ

View 1

View 2

View n

Documentation
beyond views

=

…

+

Documenting an architecture is a matter of documenting the relevant views, and then
adding documentation that applies to more than one view.

CMMI V1.3 and Architecture Oct 2010

© 2010 Carnegie Mellon University 37

73
CMMI V1.3 and Architecture
© 2010 Carnegie Mellon University

Software Architecture Documentation Needs

Runtime views to show how software will handle:

• hazards, faults, and errors

• fault tolerance/reconfigurations

• performance

• data (e.g., quality, timeliness, ownership, access privileges)

• interface boundaries

Non-runtime views of software (vital to project planning, allocating work

assignments, designing for modifiability, reusability, portability,

extensibility, etc., facilitating incremental development, and a host of

other critical purposes)

Architectural decisions and the rationale/implications/impact of those

decisions on key system qualities

74
CMMI V1.3 and Architecture
© 2010 Carnegie Mellon University

So How Well Does This Work?
Study: Impact of Army Architecture Evaluations
Twelve Army programs that had conducted ATAM or QAW exercises in

a study to elicit the perceived impact the ATAM evaluations and QAWs

had on system quality and the practices of the acquisition organization.

Results showed
• 6/12: cost less than or equal to traditional techniques

• 10/12: quality of results greater than or equal to traditional

techniques

• 10/12: helped understand and control cost and schedule

• 12/12: increased understanding of system’s quality attribute

requirements, design decisions, and risks

• 12/12: good mechanism for communication among stakeholders

• 8/12: improved the architecture

The context of use had a significant impact on the results enjoyed.

Architecture-centric acquisition is key to reaping maximal benefit.

CMMI V1.3 and Architecture Oct 2010

© 2010 Carnegie Mellon University 38

75
CMMI V1.3 and Architecture
© 2010 Carnegie Mellon University

Architecture Practices are Having an Impact 1 of 2

Results of 2008 survey of 12 Army projects that employed ATAM/QAW2

00

22

44

66

88

1010

1212

MinimalMinimal ModerateModerate SignificantSignificant Very SubstantialVery Substantial

N
u
m

b
e
r

o
f
P

ro
g
ra

m
s

N
u
m

b
e
r

o
f
P

ro
g
ra

m
s

Artifact ImprovementArtifact Improvement

Quality AttributesQuality Attributes ArchitectureArchitecture RisksRisks

• Most reported significant
improvement in their
architecturally-significant
artifacts

• Architecture teams were
able to achieve
understanding of
stakeholder expectations
and the implications of
architectural decisions on
user needs

2 Source: Impact of Army Architecture Evaluations, CMU/SEI-2009-SR-007

76
CMMI V1.3 and Architecture
© 2010 Carnegie Mellon University

Architecture Practices are Having an Impact 2 of 2

Results of 2008 survey of 12 Army projects that employed ATAM/QAW

00 22 44 66 88 1010 1212

MinimalMinimal

ModerateModerate

SignificantSignificant

Very SubstantialVery Substantial

Number of ProgramsNumber of Programs

Communication ImprovementCommunication Improvement

• Majority reported very

substantial or significant

improvement in stakeholder
communication

• Stakeholders, collectively,
are able to achieve a
common understanding of
the system under
development

– Increases likelihood that

product will address
expectations/user needs

– Improves chances for
program success

CMMI V1.3 and Architecture Oct 2010

© 2010 Carnegie Mellon University 39

77
CMMI V1.3 and Architecture
© 2010 Carnegie Mellon University

Themes From the Army Presentations - 1

“The ATAM architecture evaluations resulted in improved

documentation, improved communication, reduced risk in schedule and

cost, and a higher quality product to the warfighter.”

“Independent, 3rd party architecture evaluation is quite beneficial for

programs that are considered high risk, and/or for which the PM has no

visibility into architecture/design.”

“The ATAM is an effective mechanism for getting the stakeholders to

work together and identify architectural risks early in the

acquisition/development life cycle when they can still be mitigated in a

cost effective manner.”

• “It is important that programs (and their supporting contractors) have good
risk management procedures so that risks uncovered by an ATAM evaluation
are properly tracked and mitigated.”

78
CMMI V1.3 and Architecture
© 2010 Carnegie Mellon University

Themes From the Army Presentations - 2

“QAW should be part of the operational architecture community to ensure

quality attributes, and not just functionality, are appropriately addressed.”

• “QAW results were very beneficial to conducting follow-on ATAM evaluations
because the QAW scenarios and architectural drivers can carry forward.”

• “QAWs at the system and system of system (SoS) requirements levels are a
good thing and should especially be applied on US Joint Forces Command

(JFCOM) programs so all stakeholder requirements can be suitably
addressed.”

“QAWs and the ATAM are making a very good impact on Army programs,

perhaps more than the SEI is aware of. The SEI needs to codify this and

send the message to Army management.”

“The importance of having had the backing of Army senior leadership and

ASSIP funding is that the beneficiaries— the Army programs—went from

“Nay-Sayers” to “Yea-Sayers.””

CMMI V1.3 and Architecture Oct 2010

© 2010 Carnegie Mellon University 40

79
CMMI V1.3 and Architecture
© 2010 Carnegie Mellon University

Implementing and checking conformance

Press on to implementing the system in accordance with the

architecture.

Have processes and supporting tools to check for conformance with the

architecture.

Unfortunately, a lot of this work today is not automated.

80
CMMI V1.3 and Architecture
© 2010 Carnegie Mellon University

Principles of ACE

1. Regardless of scale, architecture is the appropriate abstraction for

reasoning about business/mission goal satisfaction.

2. Quality attributes have a dominant influence on a system’s

architecture.

3. Architectural prescriptions must be demonstrably satisfied by the

implementation.
• Software architecture must be central to software development activities.

• These activities must have an explicit focus on quality attributes.
• These activities must directly involve stakeholders – not just the

architecture team.
• The architecture must be descriptive and prescriptive.

CMMI V1.3 and Architecture Oct 2010

© 2010 Carnegie Mellon University 41

81
CMMI V1.3 and Architecture
© 2010 Carnegie Mellon University

Extending these ideas to Systems and Systems
of Systems
The previous discussion was based largely on software engineering

practices.

The ideas and techniques have been extended into the realm of

systems and systems-of-systems.

Initial results are positive.

82
CMMI V1.3 and Architecture
© 2010 Carnegie Mellon University

System / SoS Architecture Problems

Severe integration and runtime
problems arise due to inconsistencies in
how quality attributes are addressed in
system and software architectures.

This is further exacerbated in an SoS

context where major system and
software elements are developed

concurrently and oftentimes
independently.

A uniform approach for specifying
quality attribute requirements and
evaluating SoS and system
architectures against such

requirements is needed.

CMMI V1.3 and Architecture Oct 2010

© 2010 Carnegie Mellon University 42

83
CMMI V1.3 and Architecture
© 2010 Carnegie Mellon University

The Need for Augmented Mission Threads in
DoD SoS Architecture Definition

DoDAF is the SoS architecture framework for the DoD.

• It provides a good set of architectural views for an SoS

architecture.

• It inadequately addresses cross-cutting quality attribute

considerations.

System use cases focus on a functional slice of the system.

More than DoDAF and system use cases are needed to ensure that the

SoS architecture satisfies its end-to-end functional requirements and

quality attribute needs.

SoS end-to-end mission (operational or user) threads augmented with

quality attribute considerations are needed to help develop, and later

evaluate, the SoS architecture.

84
CMMI V1.3 and Architecture
© 2010 Carnegie Mellon University

One Approach

SEI developed and applied a two-pronged approach to address the early

identification of quality attribute inconsistencies, ambiguities, and

omissions within system and SoS architectures (in Directed and

Acknowledged SoS contexts).
1. Perform a "first pass" identification of inconsistencies, ambiguities, and

omissions across the constituent systems, at the SoS level, using end-
to-end mission threads that are augmented with quality attribute

concerns from SoS stakeholders.
The approach involves a series of workshop and evaluations.
– Mission Thread Workshop
– Architecture Challenge Workshop
– SoS Architecture Evaluation

2. Constituent systems that are “problematic” are further evaluated using
the system and software architecture evaluation method (based on the

ATAM), using the augmented mission threads from the Mission Thread
Workshops.

– System and Software ATAM

CMMI V1.3 and Architecture Oct 2010

© 2010 Carnegie Mellon University 43

85
CMMI V1.3 and Architecture
© 2010 Carnegie Mellon University

SoS and Quality Attribute Elicitation,
Specification, and Analysis

Mission Thread
Workshops

Systems
ATAMs

Vignettes

Mission Threads

Sos Architecture

Plans

SoS Mission/

Business Drivers

Quality Attribute Augmented

End-to-End Mission Threads

SoS Architecture

Challenges

SoS Architecture

System Architectures

SoS

Architecture

Risks

System and

Software

Architectures

System and Software

Architectures Risks

Architecture
Challenge
Workshops

SoS
Architecture
Evaluations

86
CMMI V1.3 and Architecture
© 2010 Carnegie Mellon University

Architectural Reuse

An architecture represents a significant investment.

Why use it for only one system?

Most organizations produce families of similar systems, differentiated by

features.

The DoD acquires families of similar systems.

CMMI V1.3 and Architecture Oct 2010

© 2010 Carnegie Mellon University 44

87
CMMI V1.3 and Architecture
© 2010 Carnegie Mellon University

The Real Truth About Reuse

Reuse means using an item more than once.

“The XYZ System is built with 80% reuse.”

A statement like this is vacuous.

• It is not clear what is being reused.

• It is not clear that the “reuse” has any benefit.

Reusing code or components without an architecture focus and

without pre-planning results in

• Short-term perceived win

• Long-term costs and problems

• Failure to meet business goals

88
CMMI V1.3 and Architecture
© 2010 Carnegie Mellon University

Reuse That Pays Off: Software Product Lines

BUSINESS GOALS/
APPLICATION DOMAIN

ARCHITECTURE

COMPONENTS
and SERVICES

pertain to

share an

are built from

is satisfied by

used to structure

PRODUCTSPRODUCTS

CORE
ASSETS

Product lines
• take economic advantage of commonality
• bound variation

CMMI V1.3 and Architecture Oct 2010

© 2010 Carnegie Mellon University 45

89
CMMI V1.3 and Architecture
© 2010 Carnegie Mellon University

Software Product Lines

A software product line is a set of software-intensive

systems sharing a common, managed set of features that

satisfy the specific needs of a particular market segment

or mission and that are developed from a common set of

core assets in a prescribed way.

90
CMMI V1.3 and Architecture
© 2010 Carnegie Mellon University

TOTAL
LIFE CYCLE

REUSE

MORE
BENEFIT

How Do Product Lines Help?

Product lines amortize the investment
in these and other core assets:

• requirements and requirements analysis

• domain model

• software architecture and design

• performance engineering

• documentation

• test plans, test cases, and test data

• people: their knowledge and skills

• processes, methods, and tools

• budgets, schedules, and work plans

• components and services

PRODUCT LINES = STRATEGIC REUSE

CMMI V1.3 and Architecture Oct 2010

© 2010 Carnegie Mellon University 46

91
CMMI V1.3 and Architecture
© 2010 Carnegie Mellon University

Successful Software Product Lines

Improvements in cost, time to market, and productivity that come with

successful product lines abound.

• Cummins reduced the time it takes to produce software for a diesel engine
from one year to one week.

• Motorola realized a 400% productivity improvement in a family of one-way
pagers.

• Hewlett-Packard reduced time to market by a factor of seven and increased
productivity by a factor of four in a family of printers.

• The NRO built a ground control system with 10% of the expected number of
developers and reduced defects by 90%.

• Nokia reports producing 25 to 30 different phone models per year by using a
product line approach.

92
CMMI V1.3 and Architecture
© 2010 Carnegie Mellon University

Widespread Application - 1

Feed control and farm
management software

Gas turbines, train control,
semantic graphics framework

Asea Brown Boveri

Computer printer servers,
storage servers, network camera

and scanner servers

Bold Stroke Avionics Customized solutions for
transportation industries

E-COM Technology Ltd.

Medical imaging workstations
AXE family of

telecommunications switches
Software for engines,
transmissions and
controllers

Firmware for computer
peripherals

Elevator control systems

RAID controller firmware
for disk storage units

Internet payment gateway
infrastructure products

5ESS telecommunications
switch

Interferometer product line

Mobile phones, mobile browsers, telecom
products for public, private and cellular

networks

CMMI V1.3 and Architecture Oct 2010

© 2010 Carnegie Mellon University 47

93
CMMI V1.3 and Architecture
© 2010 Carnegie Mellon University

Widespread Application - 2

High-end televisions,
PKI telecommunications switching system,

diagnostic imaging equipment

Office appliances Automotive gasoline systems

Commercial flight control system avionics,
Common Army Avionics System (CAAS),

U.S. Army helicopters

Revenue acquisition
management systems

Software for viewing and quantifying
radiological images

EPOC operating system

Industrial supervisory control
and business process
management systems

Climate and flue gas
measurement devices

Command and control
simulator for Army fire
support

Support software

Test range facilities
Pagers product line

94
CMMI V1.3 and Architecture
© 2010 Carnegie Mellon University

Software Product Lines in the DoD

Organizations having or adopting a software product line approach include

• US Army C-E LCMC: Advanced Multiplex Test System (AMTS)

• Army Training Information Systems Directorate: Army Training Information Architecture
(ATIA)

• Overwatch Textron Systems: Overwatch Intelligence Center (OIC) Software Product Line

• OneSAF: OneSAF Product Line Architecture

• Joint Battle Command – Platform product line

• Rockwell Collins: Common Avionics Architecture System (CAAS)

• PEO Simulation, Training & Instrumentation (PEO STRI): Live Training Transformation
Components plus Common Training Instrumentation Architecture (LT2/CTIA)

• PEO Simulation, Training & Instrumentation (PEO STRI): SE Core - Synthetic Environment
Core (SE Core) is the Army's Common Virtual Environment (CVE)

• US Army Joint Fires Product Line

• Common Driver Training Product Line

• Northrop Grumman Common Link Integration Processing product line

• USMC Live Training Transformation product line

CMMI V1.3 and Architecture Oct 2010

© 2010 Carnegie Mellon University 48

95
CMMI V1.3 and Architecture
© 2010 Carnegie Mellon University

Presentation Outline

CMMI V1.3 – Context for modern engineering practices changes

Introduction to Architecture

Essential Architecture Practices

Where Are the Architecture-Centric Practices in CMMI V1.3?

Summary

Questions and Answers

96
CMMI V1.3 and Architecture
© 2010 Carnegie Mellon University

Modern Development Practices in CMMI - 1

For Version 1.3, CMMI provides better guidance in support of

architecture-centric practices

• creating the business case for the system (partially in RD)

• understanding the requirements (RD)

• creating and/or selecting the architecture (TS)

• documenting and communicating the architecture (RD, TS)

• analyzing or evaluating the architecture (RD, TS, VAL, VER)

• implementing the system based on the architecture (TS; A/PL notes)

• ensuring that the implementation conforms to the architecture (VER)

• evolving the architecture so that it continues to meet business and

mission goals (implicit in the phrase “establish and maintain”)

The above repeats the “Architecture-Centric Activities” slide seen earlier.

(Elaborations indicate where the practice is addressed in CMMI

V1.3.)

CMMI V1.3 and Architecture Oct 2010

© 2010 Carnegie Mellon University 49

97
CMMI V1.3 and Architecture
© 2010 Carnegie Mellon University

Modern Development Practices in CMMI - 2

CMMI V1.3 provides improved terminology to support
architecture-centric practices

• Updated the glossary to include new terms (and modified some old terms)

• Updated the informative material (especially ARD and ATM in ACQ; RD, TS,
and VER in DEV; and SSD in SVC) to:

– make use of the new terms

– bring more emphasis to quality attributes and thus strike a better balance
between functional and non-functional requirements

• Replaced selected uses of overloaded terms such as “performance” with an
appropriate qualifying phrase.

98
CMMI V1.3 and Architecture
© 2010 Carnegie Mellon University

CMMI Support for: creating the business case
for the system
CMMI V1.3 touches on the “why” for the business in many places,

including OPF, OPM, OPP, QPM, RD. Focusing here only on RD:

RD SP 1.1 Elicit Needs

Elicit stakeholder needs, expectations, constraints, and interfaces for all

phases of the product lifecycle.

RD SP 1.2 Transform Stakeholder Needs into Customer

Requirements

Transform stakeholder needs, expectations, constraints, and interfaces

into prioritized customer requirements.

[snip] Relevant stakeholders representing all phases of the product's

lifecycle should include business as well as technical functions. In this

way, concepts for all product related lifecycle processes are

considered concurrently with the concepts for the products. Customer

requirements result from informed decisions on the business as well

as technical effects of their requirements. [Emphasis added]

CMMI V1.3 and Architecture Oct 2010

© 2010 Carnegie Mellon University 50

99
CMMI V1.3 and Architecture
© 2010 Carnegie Mellon University

CMMI Support for: understanding requirements - 1

CMMI support for understanding requirements is mostly found in the RD

PA (and secondarily in a few other places, especially VAL).

SG 1 Develop Customer Requirements

SP 1.1 Elicit Needs

SP 1.2 Develop theTransform Stakeholder Needs into Customer
Requirements

SG 2 Develop Product Requirements

SP 2.1 Establish Product and Product Component Requirements

SP 2.2 Allocate Product Component Requirements

SP 2.3 Identify Interface Requirements

SG 3 Analyze and Validate Requirements

SP 3.1 Establish Operational Concepts and Scenarios

SP 3.2 Establish a Definition of Required Functionality and Quality Attributes

SP 3.3 Analyze Requirements

SP 3.4 Analyze Requirements to Achieve Balance

SP 3.5 Validate Requirements

100
CMMI V1.3 and Architecture
© 2010 Carnegie Mellon University

CMMI Support for: understanding requirements - 2

Specific Goal and Practice Changes (most of them in RD)

Changed RD SG 3 so it no longer appears to focus on functionality.

SG 3 Analyze and Validate Requirements

The requirements are analyzed and validated, and a definition of required

functionality is developed.

Changed SP 1.2 to make stakeholder/customer priorities more explicit.

SP 1.2 Transform Stakeholder Needs into Develop the Customer

Requirements

Transform stakeholder needs, expectations, constraints, and interfaces into

prioritized customer requirements.

Changed RD SP 3.2 to add emphasis to non-functional requirements.

SP 3.2 Establish a Definition of Required Functionality and Quality

Attributes

Establish and maintain a definition of required functionality and quality

attributes.

CMMI V1.3 and Architecture Oct 2010

© 2010 Carnegie Mellon University 51

101
CMMI V1.3 and Architecture
© 2010 Carnegie Mellon University

CMMI Support for: understanding requirements - 3

RD (especially) and other PAs: Informative Material Changes

Added and revised the informative material throughout these PAs to

appropriately mention the following engineering concepts:

• quality attributes (i.e., non-functional requirements or “ilities”)

• product lines, system of systems

• architecture-centric practices

• allocation of product capabilities to release increments

• technology maturation (and obsolescence)

These concepts are mentioned in example boxes, in examples provided

in the notes, and in discussion that mentions various approaches that

can be used.

When functional requirements are discussed, mention of quality

attributes is added to balance the view of requirements.

102
CMMI V1.3 and Architecture
© 2010 Carnegie Mellon University

CMMI Support for: understanding requirements - 4

In RD SP 1.1 Elicit Needs

• Added the following examples of techniques to elicit needs:

o [snip] Questionnaires, interviews, and scenarios (operational scenarios,
sustainment, and development) obtained from end users

o Operational, sustainment, and development walkthroughs and end-user
task analysis

o Quality attribute elicitation workshops with stakeholders

• Added Example Work Product:

Results of requirements elicitation activities

In RD SP 1.2 Transform Stakeholder Needs into Customer

Requirements

• Added the following new subpractice:

2. Establish and maintain a prioritization of customer functional and

quality attribute requirements.

CMMI V1.3 and Architecture Oct 2010

© 2010 Carnegie Mellon University 52

103
CMMI V1.3 and Architecture
© 2010 Carnegie Mellon University

CMMI Support for: understanding requirements - 5

In RD SP 2.1 Establish Product and Product Component Requirements

• Added a note to Subpractice 2 (deriving requirements that result from

design decisions):

Architectural decisions, such as selection of architecture patterns,
introduce additional derived requirements for product components. For
example, the Layers Pattern will constrain dependencies between certain
product components.

• Added the following new subpractice:

3. Develop architectural requirements capturing critical quality

attributes and quality attribute measures necessary for establishing

the product architecture and design.

104
CMMI V1.3 and Architecture
© 2010 Carnegie Mellon University

CMMI Support for: understanding requirements - 6

In RD SP 2.2 Allocate Product Component Requirements

• Added a note:

The product architecture provides the basis for allocating product
requirements to product components. [snip] In cases where a higher level
requirement specifies performance a quality attribute that will be the
responsibility of more than one product component, the performance

mustquality attribute can sometimes be partitioned for unique allocation to
each product component as a derived requirement, however, other times

the shared requirement should instead be allocated directly to the
architecture. [snip]

• Revised first four subpractices:

1. Allocate requirements to functions.

2. Allocate requirements to product components and the architecture.

3. Allocate design constraints to product components and the architecture.

4. Allocate requirements to delivery increments.

CMMI V1.3 and Architecture Oct 2010

© 2010 Carnegie Mellon University 53

105
CMMI V1.3 and Architecture
© 2010 Carnegie Mellon University

CMMI Support for: understanding requirements - 7

In RD SG 3 Analyze and Validate Requirements

• Added a note:

Architecturally significant quality attributes are identified based on

mission and business drivers.

In RD SP 3.1 Establish Operational Concepts and Scenarios

• Changed Subpractice 1 to read:

1. Develop operational concepts and scenarios that include

functionality, performanceoperations, installation, development,

maintenance, support, and disposal as appropriate.

Identify and develop scenarios, consistent with the level of detail in the
stakeholder needs, expectations, and constraints in which the proposed
product or product component is expected to operate.

Augment scenarios with quality attribute considerations for the functions
(or other logical entities) described in the scenario.

106
CMMI V1.3 and Architecture
© 2010 Carnegie Mellon University

CMMI Support for: understanding requirements - 8

In RD SP 3.2 Establish a Definition of Required Functionality and

Quality Attributes

• Added a note (split here for readability):

Such approaches have evolved in recent years through the introduction of
architecture description languages, methods, and tools to more fully
address and characterize the quality attributes, allowing a richer (e.g.,
multi-dimensional) specification of constraints on how the defined
functionality will be realized in the product, and facilitating additional
analyses of the requirements and technical solutions.

Some quality attributes will emerge as architecturally significant and thus
drive the development of the product architecture. These quality attributes

often reflect cross-cutting concerns that may not be allocatable to lower
level elements of a solution. A clear understanding of the quality attributes
and their importance based on mission or business needs is an essential
input to the design process.

• Revised the subpractices in line with the above note.

CMMI V1.3 and Architecture Oct 2010

© 2010 Carnegie Mellon University 54

107
CMMI V1.3 and Architecture
© 2010 Carnegie Mellon University

CMMI Support for: understanding requirements - 9

In RD SP 3.4 Analyze Requirements to Achieve Balance

• Added the following new subpractice:

4. Assess the impact of the architecturally significant quality attribute

requirements on the product and product development costs and

risks.

When the impact of requirements on costs and risks seems to outweigh the
perceived benefit, relevant stakeholders should be consulted to determine
what changes may be needed.

108
CMMI V1.3 and Architecture
© 2010 Carnegie Mellon University

CMMI Support for: understanding requirements - 10

In TS Introductory Notes

• Added technology maturation and obsolescence as additional drivers of
requirements changes in maintenance and sustainment projects.

In VAL Introductory Notes

Reinforced when validation occurs in the product lifecycle.

“[snip] validation is performed early (concept/exploration phases) and
incrementally throughout the product lifecycle (including transition to
operations and sustainment).”

In VAL SP 1.1 Select Products for Validation

Added additional examples of products and product components that

can be validated:

access protocols and data interchange reporting formats

Added example of validation method:

incremental delivery of working and potentially acceptable product

CMMI V1.3 and Architecture Oct 2010

© 2010 Carnegie Mellon University 55

109
CMMI V1.3 and Architecture
© 2010 Carnegie Mellon University

CMMI Support for: the architecture - 1

CMMI support for:

• creating/selecting

• documenting/communicating

• analyzing/evaluating

the architecture

Is mostly found in the first two goals of TS:

SG 1 Select Product Component Solutions

SP 1.1 Develop Alternative Solutions and Selection Criteria

SP 1.2 Select Product Component Solutions

SG 2 Develop the Design

SP 2.1 Design the Product or Product Component

SP 2.2 Establish a Technical Data Package

SP 2.3 Design Interfaces Using Criteria

SP 2.4 Perform Make, Buy, or Reuse Analyses

110
CMMI V1.3 and Architecture
© 2010 Carnegie Mellon University

CMMI Support for: the architecture - 2

TS Informative Material Changes

“Quality attribute models, simulations, prototypes or pilots can be

used to provide additional information about the properties of the

potential design solutions to aid in the selection of solutions.

Simulations can be particularly useful for projects developing

systems-of-systems.” [TS Intro Notes]

“Architectural featureschoices and patterns that provide a foundation

for product improvement and evolutionsupport achievement of quality

attribute requirements are considered.

[snip] COTS alternatives [snip] can require modifications to aspects

such as interfaces or a customization of some of the features to better

achieve productcorrect a mismatch with functional or quality attribute

requirements, or with architectural designs.” [TS SG 1 note]

CMMI V1.3 and Architecture Oct 2010

© 2010 Carnegie Mellon University 56

111
CMMI V1.3 and Architecture
© 2010 Carnegie Mellon University

CMMI Support for: the architecture - 3

TS Informative Material Changes (continued)

In TS SP 1.1 Develop Alternative Solutions and Selection Criteria

• Added an additional consideration for selection criteria:

Achievement of key quality attribute requirements, such as product
timeliness, safety, reliability, and maintainability

• Added new subpractice 4.

4. Identify re-usable solution components or applicable architecture patterns.

In TS SP 2.1 Design the Product or Product Component

• Added additional examples of architecture definition tasks.

–Selecting architectural patterns that support the functional and quality
attribute requirements, and instantiating or composing those patterns to
create the product architecture

–Formally defining component behavior and interaction using an architecture
description language

112
CMMI V1.3 and Architecture
© 2010 Carnegie Mellon University

CMMI Support for: the architecture - 4

TS Informative Material Changes (continued)

In TS SP 2.2 Establish a Technical Data Package

• Added new subpractice 2.

2. Determine the views to be used to document the architecture.

Views are selected to document the structures inherent in the product and
to address particular stakeholder concerns.

In TS SP 2.3 Design Interfaces Using Criteria

• Added to what “interface designs include:”

– stimulus and data characteristics for software, including sequencing
constraints or protocols

– resources consumed processing a particular stimulus

– Exception or error handling behavior for stimuli that are erroneous or out of

specified limits.

CMMI V1.3 and Architecture Oct 2010

© 2010 Carnegie Mellon University 57

113
CMMI V1.3 and Architecture
© 2010 Carnegie Mellon University

CMMI Support for: implementing the system
based on the architecture - 1

CMMI V1.3 support for implementing the system is mostly found in the

third goal of the TS PA.

SG 3 Implement the Product Design

SP 3.1 Implement the Design

SP 3.2 Develop Product Support Documentation

TS Informative Material Changes

In TS SP 3.1 Implement the Design

• In Subpractice 1, added aspect oriented programming as a software

coding methods example.

114
CMMI V1.3 and Architecture
© 2010 Carnegie Mellon University

CMMI Support for: implementing the system
based on the architecture - 2

Other Informative Material Changes

Special notes for Agile and for Product Lines have been inserted in the

Intro Notes of various PAs in V1.3.

Changes Supporting Use of Agile Methods

Because CMMI practices are written for use in a broad variety of

contexts, business situations, and application domains, it is not

possible (even if it were appropriate) to advocate any specific

implementation approach.

However, Agile methods and approaches are now in wider use, and so

for V1.3, it seemed appropriate to acknowledge this, identify how

Agile approaches can address CMMI practices and conversely,

identify the value that CMMI can bring to Agile implementations.

The next set of slides describe how CMMI V1.3 addresses Agile

methods.

CMMI V1.3 and Architecture Oct 2010

© 2010 Carnegie Mellon University 58

115
CMMI V1.3 and Architecture
© 2010 Carnegie Mellon University

Addressing Agile - 1

The Problem

Developers that use Agile methods sometimes resist using CMMI

because they can’t see how CMMI practices can complement or

improve the effectiveness of Agile methods.

Overview of Solution

Added guidance to the appropriate PAs to do the following:

• Help users interpret the practices in a context where Agile methods

are used

• Reinforce the applicability of the practices in an Agile environment

• Send the message that CMMI is a robust best practice framework

meant to be used in Agile environments as well as other development

environments

116
CMMI V1.3 and Architecture
© 2010 Carnegie Mellon University

Addressing Agile - 2

Solution

Added a new section to DEV Chapter 5 entitled “Interpreting CMMI

When Using Agile Approaches”

• This section describes how CMMI practices can apply in a variety of

development environments. It also describes the interpretive

guidance that has been added to selected PAs for use in Agile

environments.

Added interpretive guidance to the following PAs:

• In DEV: CM, REQM, PP, RD, TS, PI, VER, PPQA, and RSKM

• In ACQ: AM, ATM, PMC, and PP

• In SVC: SSD

Added in DEV and SVC (SSD only) Agile-related examples as bullets in

example boxes (informative material).

CMMI V1.3 and Architecture Oct 2010

© 2010 Carnegie Mellon University 59

117
CMMI V1.3 and Architecture
© 2010 Carnegie Mellon University

Addressing Agile - 3

A note added in the RD Intro Notes:

In Agile environments, requirements are communicated and tracked through
mechanisms such as product backlogs, story cards, and screen mock-ups.
[snip] Traceability and consistency across requirements and work products is
addressed through the mechanisms already mentioned as well as during
start-of-iteration or end-of-iteration activities such as “retrospectives” and
“demo days.” [Emphasis added]

A note added in the TS Intro Notes:

In Agile environments, the focus is on early solution exploration. By making
the selection and tradeoff decisions more explicit, the Technical Solution
process area helps improve the quality of those decisions, both individually
and over time. [snip] When someone other than the team will be working on
the product in the future, release information, maintenance logs, and other
data are typically included with the installed product. To support future
product updates, rationale (for trade-offs, interfaces, and purchased parts) is
captured so that why the product exists can be better understood. [snip]
[Emphasis added]

118
CMMI V1.3 and Architecture
© 2010 Carnegie Mellon University

Addressing Agile - 4

For more information about using Agile in development and acquisition,

and the relationship to CMMI, see:

• Glazer, Hillel; Dalton, Jeff; Anderson, David; Konrad, Mike; & Shrum,

Sandy. CMMI or Agile: Why Not Embrace Both! (CMU/SEI-2008-TN-

003). Pittsburgh, PA: Software Engineering Institute, Carnegie Mellon

University, November 2008.

http://www.sei.cmu.edu/library/abstracts/reports/08tn003.cfm

• Lapham, Mary Ann; Williams, Ray C.; Hammons, Charles; Burton,

Daniel; and Schenker, Fred. Considerations for Using Agile in DoD

Acquisition (CMU/SEI-2010-TR-022). Pittsburgh, PA: Software

Engineering Institute, Carnegie Mellon® University, April 2010.

http://www.sei.cmu.edu/library/abstracts/reports/10tn002.cfm

• McMahon, Paul E., “Integrating CMMI into Agile Development: Case

Studies and Proven Techniques for Faster Performance

Improvement.” Addison-Wesley, 2011.

CMMI V1.3 and Architecture Oct 2010

© 2010 Carnegie Mellon University 60

119
CMMI V1.3 and Architecture
© 2010 Carnegie Mellon University

CMMI Support for: implementing the system
based on the architecture - 3

Likewise, notes have been added to the Intro Notes of selected PAs
to explain how the PA can be effectively applied in a product line
environment.

120
CMMI V1.3 and Architecture
© 2010 Carnegie Mellon University

Addressing Product Lines

An example of a note added in the RD Intro Notes:

For product lines, engineering processes (including requirements
development) may be applied to at least two levels in the organization. At an
organizational or product line level, a “commonality and variation analysis” is
performed to help elicit, analyze, and establish core assets for use by projects

within the product line. At the project level, these core assets are then used
as per the product line production plan as part of the project’s engineering
activities. [Emphasis added]

An example of a note added in the TS Intro Notes:

For product lines, these practices apply to both core asset development (i.e.,
building for reuse) and product development (i.e., building with reuse). Core
asset development additionally requires product line variation management
(the selection and implementation of product line variation mechanisms) and
product line production planning (the development of processes and other
work products that define how products will be built to make best use of these

core assets). [Emphasis added]

CMMI V1.3 and Architecture Oct 2010

© 2010 Carnegie Mellon University 61

121
CMMI V1.3 and Architecture
© 2010 Carnegie Mellon University

CMMI Support for: ensuring implementation
conforms to the architecture - 1

CMMI support for ensuring the implementation conforms to the

architecture is mostly found in the VER PA. (And also in notes and

subpractices of PI SP 3.3 and TS SP 3.1 and 3.2.)

SG 1 Prepare for Verification

SP 1.1 Select Work Products for Verification

SP 1.2 Establish the Verification Environment

SP 1.3 Establish Verification Procedures and Criteria

SG 2 Perform Peer Reviews

SP 2.1 Prepare for Peer Reviews

SP 2.2 Conduct Peer Reviews

SP 2.3 Analyze Peer Review Data

SG 3 Verify Selected Work Products

SP 3.1 Perform Verification

SP 3.2 Analyze Verification Results

122
CMMI V1.3 and Architecture
© 2010 Carnegie Mellon University

CMMI Support for: ensuring implementation
conforms to the architecture - 2

In VER SG 1 Prepare for Verification

• Changed a note to read:

Methods of verification include, but are not limited to, inspections, peer
reviews, audits, walkthroughs, analyses, architecture evaluations,

simulations, testing, and demonstrations.

In VER SP 1.1 Select Work Products for Verification

• Added additional examples of verification methods:

software architecture conformance evaluation and
continuous integration (i.e., Agile approach).

In VER SP 1.3 Establish Verification Procedures and Criteria

• Added new example of sources of verification criteria:

customers reviewing work products collaboratively with developers

CMMI V1.3 and Architecture Oct 2010

© 2010 Carnegie Mellon University 62

123
CMMI V1.3 and Architecture
© 2010 Carnegie Mellon University

CMMI Support for: ensuring implementation
conforms to the architecture - 3

In VER SP 2.1 Prepare for Peer Reviews

• In Subpractice 1, added additional example of types of peer review:

architecture implementation conformance evaluation

In VER SP 2.3 Analyze Peer Review Data

• In Subpractice 4, added additional examples of peer review data

that can be analyzed:

user stories or case studies associated with a defect and

the end-users and customers who are associated with defect

124
CMMI V1.3 and Architecture
© 2010 Carnegie Mellon University

CMMI Support for: evolving the architecture so that
it continues to meet business and mission goals
- 1 The need for evolution arises from both inside and outside:

“As the organization improves its process performance or as business

strategies change, new business objectives are identified and associated
quality and process performance objectives are derived.” [OPM SG 1 Notes]

These objectives then drive the activities we read about in the project

management and engineering PAs such as RD.

The phrase “establish and maintain” appears in the CMMI practices. It

implies that key artifacts may need to change to remain useful (see

next slide). If higher-level objectives change, the artifact may need to

too.

As an example from RD:

“The modification of requirements due to approved requirement changes is

covered by the “maintain” aspect of this specific practice; [snip].” [SP 2.1

note]

CMMI V1.3 and Architecture Oct 2010

© 2010 Carnegie Mellon University 63

125
CMMI V1.3 and Architecture
© 2010 Carnegie Mellon University

CMMI Support for: evolving the architecture so that
it continues to meet business and mission goals - 2

The definition for “establish and maintain” was changed in V1.3 to

support the evolution described on the previous slide.

Establish and maintain

DEFINITION

Create, document, use, and revise . . . as necessary to ensure it remains they
remain useful.

The phrase “establish and maintain” means more than a combination of its
component terms; . . . plays a special role in communicating a deeper principle in
CMMI: work products that have a central or key role in work group, project, and
organizational performance should be given attention to ensure they are used and
useful in that role.

This phrase has particular significance in CMMI because it often appears in goal
and practice statements . . . and should be taken as shorthand for applying the
principle to whatever work product is the object of the phrase.

126
CMMI V1.3 and Architecture
© 2010 Carnegie Mellon University

Changes in CMMI Terminology - 1

Allocated requirement

Improved the definition and provided additional examples of what things

requirements can be allocated to.

The improvements to the definition make the substance of the solution

space and allocation of requirements to it more explicit, allowing for

superior architectures and more insightful analyses (including

verification) of requirements and technical solutions.

DEFINITION

Requirement that leviesresults from levying all or part of the

performance and functionality of a higher level requirement on a lower

level architectural element or design component.

More generally, requirements can be allocated to other logical or physical

components including people, consumables, delivery increments, or the
architecture as a whole, depending on what best enables the product or
service to achieve the requirements.

CMMI V1.3 and Architecture Oct 2010

© 2010 Carnegie Mellon University 64

127
CMMI V1.3 and Architecture
© 2010 Carnegie Mellon University

Changes in CMMI Terminology - 2

Architecture

This term is included in the Glossary for the first time. (V1.2 used the

phrase “product architecture” throughout but never defined it.)

This term and its use throughout the rest of the model is intended to

encourage use of proven, architecture-centric practices and the

recognition of “architecture” as a principal engineering artifact.

DEFINITION

The set of structures needed to reason about a product. These

structures are comprised of elements, relations among them, and

properties of both.

In a service context, the architecture is often applied to the service system.

Note that functionality is only one aspect of the product. Quality attributes,
such as responsiveness, reliability, and security, are also important to reason
about. Structures provide the means for highlighting different portions of the
architecture. (See also “functional architecture.”)

128
CMMI V1.3 and Architecture
© 2010 Carnegie Mellon University

Changes in CMMI Terminology - 3

Definition of required functionality and quality attributes

The “definition of required functionality” term has been removed from

CMMI because of the implicit suggestion that functionality be

addressed first or has highest priority. The term has been replaced

with one that is intended to help ensure a sufficiently balanced focus

(functional and non-functional) in requirements analysis.

DEFINITION

A characterization of required functionality and quality attributes obtained
through “chunking,” organizing, annotating, structuring, or formalizing the
requirements (functional and non-functional) to facilitate further refinement

and reasoning about the requirements as well as (possibly, initial) solution
exploration, definition, and evaluation.

As technical solution processes progress, this characterization can be further
evolved into a description of the architecture versus simply helping scope and
guide its development, depending on the engineering processes used;
requirements specification and architectural languages used; and the tools
and the environment used [snip].

CMMI V1.3 and Architecture Oct 2010

© 2010 Carnegie Mellon University 65

129
CMMI V1.3 and Architecture
© 2010 Carnegie Mellon University

Changes in CMMI Terminology - 4

“Functional analysis” and “functional architecture”

These terms are now “cul de sacs” in the model.

The only place these terms now appear in CMMI-DEV V1.3 outside the

Glossary is in the first note of RD SP 3.2 and as an example work

product.

The note contrasts the approaches implied by these terms with “modern

engineering approaches” that encourage a more balanced treatment

of requirements, functional and non-functional.

130
CMMI V1.3 and Architecture
© 2010 Carnegie Mellon University

Changes in CMMI Terminology - 5

Product line

DEFINITION

A group of products sharing a common, managed set of features that

satisfy specific needs of a selected market or mission. and that are

developed from a common set of core assets in a prescribed way.

The development or acquisition of products for the product line is based on

exploiting commonality and bounding variation (i.e., restricting unnecessary
product variation) across the group of products. The managed set of core assets
(e.g., requirements, architectures, components, tools, testing artifacts, operating
procedures, software) includes prescriptive guidance for their use in product
development. Product line operations involve interlocking execution of the broad
activities of core asset development, product development, and management.

Many people use “product line” just to mean the set of products produced by a
particular business unit, whether they are built with shared assets or not. We call
that collection a "portfolio," and reserve "product line" to have the technical
meaning given here.

CMMI V1.3 and Architecture Oct 2010

© 2010 Carnegie Mellon University 66

131
CMMI V1.3 and Architecture
© 2010 Carnegie Mellon University

Changes in CMMI Terminology - 6

Quality attribute

This term is now included in the Glossary for the first time. The term is

intended to supplant others – especially those focusing on only a few

dimensions (e.g., “performance”) – to encourage a broader view of

non-functional requirements. The term was refined through much

effort, as neither ISO 25030 (SQuaRE) nor the original SEI definitions

were quite satisfactory.

DEFINITION

A property of a product or service by which its quality will be judged by
relevant stakeholders. Quality attributes are characterizable by some
appropriate measure.

Quality attributes are non-functional, such as timeliness, throughput,
responsiveness, security, modifiability, reliability, and usability. They have a
significant influence on the architecture.

132
CMMI V1.3 and Architecture
© 2010 Carnegie Mellon University

Changes in CMMI Terminology - 7
Performance (not a term appearing by itself in Glossary)

One of our purposes for V1.3 was to achieve greater clarity in the

engineering practices of CMMI. This purpose is aided when the term

“performance,” which has many meanings, is used unambiguously

and correctly throughout. Thus, uses of the term “performance” were

reviewed for clarity, and where appropriate, qualified, e.g.:

- supplier’s performance
- project performance
- product performance
- technical performance

- organization’s performance
- cost, schedule, performance
- performed process (CL1)
- process performance
- period of performance

- service delivery performance
- project progress and performance
- fit, form, function, performance

CMMI V1.3 and Architecture Oct 2010

© 2010 Carnegie Mellon University 67

133
CMMI V1.3 and Architecture
© 2010 Carnegie Mellon University

Related Changes

Product Integration

We revised PI SP 1.1 and the terminology used from an emphasis on

“integration sequence” to an emphasis on “integration strategy” to

reflect the complexity of product integration.

The product integration strategy describes the approach for receiving,

assembling, and evaluating the product components that comprise

the product.

SP 1.1 Establish an Determine Integration Strategy Sequence

Establish and maintain a Determine the product component

integration strategy sequence.

Related changes were made elsewhere in the PI PA.

134
CMMI V1.3 and Architecture
© 2010 Carnegie Mellon University

Presentation Outline

CMMI V1.3 – Context for modern engineering practices changes

Introduction to Architecture

Essential Architecture Practices

Where Are the Architecture-Centric Practices in CMMI V1.3?

Summary

Questions and Answers

CMMI V1.3 and Architecture Oct 2010

© 2010 Carnegie Mellon University 68

135
CMMI V1.3 and Architecture
© 2010 Carnegie Mellon University

The quality and longevity of a software-intensive system is

largely determined by its architecture.

Early identification of architectural risks saves money and time.

There are proven practices to help ensure that suppliers and

acquirers can develop and acquire systems that have

appropriate architectures.

CMMI V1.3 has a new emphasis on architecture.

The efficacy of the architecture has a direct impact on

program or mission success, and customer satisfaction.

Summary & Conclusions

136
CMMI V1.3 and Architecture
© 2010 Carnegie Mellon University

References - 1

Software Architecture in Practice, Second Edition

Bass, L.; Clements, P.; & Kazman, R. Reading, MA:

Addison-Wesley, 2003.

Evaluating Software Architectures: Methods and Case

Studies

Clements, P.; Kazman, R.; & Klein, M. Reading, MA:

Addison- Wesley, 2002.

Documenting Software Architectures: Views and Beyond

Clements, P.; Bachmann, F.; Bass, L.; Garlan, D.; Ivers, J.;

Little, R.; Nord, R.; & Stafford, J. Reading, MA:

Addison-Wesley, 2002.

Software Product Lines: Practices and Patterns

Clements, P.; Northrop, L. Reading, MA: Addison-Wesley,

2001.

CMMI V1.3 and Architecture Oct 2010

© 2010 Carnegie Mellon University 69

137
CMMI V1.3 and Architecture
© 2010 Carnegie Mellon University

References - 2

You can find a moderated list of references on the “Software

Architecture Essential Bookshelf”

http://www.sei.cmu.edu/architecture/start/publications/bookshelf.cfm

Grady Booch: Handbook of Software Architecture (currently

only an on-line reference):

http://www.handbookofsoftwarearchitecture.com/index.jsp?page=Main

CMMI for Development, Version 1.3

http://www.sei.cmu.edu/library/abstracts/reports/10tr033.cfm

(also available as a book from the SEI Series on Software Engineering:)

Chrissis, Mary Beth; Konrad, Mike; & Shrum, Sandy. CMMI: Guidelines for
Process Integration and Product Improvement, 3rd Edition. Boston:
Addison-Wesley, 2011.

138
CMMI V1.3 and Architecture
© 2010 Carnegie Mellon University

Six Courses

Software Architecture

Principles and Practices*

Documenting
Software Architectures

Software Architecture
Design and Analysis

Software Product Lines

ATAM Evaluator Training

ATAM Leader Training

ATAM Observation

Software
Architecture
Professional

ATAM
Evaluator

ATAM
Leader

Three Certificate Programs

����

����

����

����

����

����

����

����

����

����

The SEI Software Architecture Curriculum

����: required to

receive certificate

����

����

����
*: available through

e-learning

CMMI V1.3 and Architecture Oct 2010

© 2010 Carnegie Mellon University 70

139
CMMI V1.3 and Architecture
© 2010 Carnegie Mellon University

Contact Information

U.S. Mail:

Software Engineering Institute

Carnegie Mellon University

4500 Fifth Avenue

Pittsburgh, PA 15213-3890

World Wide Web:

http://www.sei.cmu.edu/productlines

SEI Fax: 412-268-5758

Mike Konrad

SEPM

Telephone: 412-268-5813

Email: mdk@sei.cmu.edu

Larry Jones

Research, Technology, and Systems
Solutions Program

Telephone: 719-481-8672

Email: lgj@sei.cmu.edu

140
CMMI V1.3 and Architecture
© 2010 Carnegie Mellon University

Questions

CMMI V1.3 and Architecture Oct 2010

© 2010 Carnegie Mellon University 71

141
CMMI V1.3 and Architecture
© 2010 Carnegie Mellon University

NO WARRANTY

THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE
MATERIAL IS FURNISHED ON AN “AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY
MAKES NO WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO
ANY MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR
PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM
USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY
WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT,
TRADEMARK, OR COPYRIGHT INFRINGEMENT.

Use of any trademarks in this presentation is not intended in any way to infringe on the
rights of the trademark holder.

This Presentation may be reproduced in its entirety, without modification, and freely
distributed in written or electronic form without requesting formal permission. Permission
is required for any other use. Requests for permission should be directed to the Software
Engineering Institute at permission@sei.cmu.edu.

This work was created in the performance of Federal Government Contract Number
FA8721-05-C-0003 with Carnegie Mellon University for the operation of the Software
Engineering Institute, a federally funded research and development center. The
Government of the United States has a royalty-free government-purpose license to use,
duplicate, or disclose the work, in whole or in part and in any manner, and to have or
permit others to do so, for government purposes pursuant to the copyright license under
the clause at 252.227-7013.

