Versatile Affordable Advanced Turbine Engines Provide Game Changing Capability with **Superior Fuel Efficiency**

Daniel E Thomson **Turbine Engine Division Propulsion Directorate** Air Force Research Laboratory

Turbine Engines Power DOD's "Air Presence" and "Air Capability"

Bombers _/

Helicopters

*27,525 Military A/C powered by

Others

*49,416 Turbine Engines

Fighters

Missiles

US Air Force Energy Program

Vision ... "Make energy a consideration in all we do"

- Reduce Demand
- Increase Supply
- Cultural Change

The Air Force's mission to *fly, fight, and win* entails operations that require a tremendous amount of energy

Increase Supply Single Battlespace Fuel (SBF)

- Completing S&T support for "Hydrotreated Renewable Jet" (HRJ)
 biomass-derived jet fuel 50/50 blend certification by AFCO per AF Energy Plan
 - Research Reports
 - Data to support gap analyses
- Developing next generation alternative fuels to TRL 6
 - Working with DARPA, CAAFI/FAA, DOE, USDA
 - Advanced processes, fully synthetic fuels
- Developing improved emissions measurement tech
 - Collaborating with FAA, EPA
- Next generation endothermic fuels for hypersonics
 - Improved fuels, catalysts
- Nanotechnology for improved fuels, deployable energy

APPROVED FOR PUBLIC RELEASE Case Number 88ABW-2010-1467

modeling

VAATE Provides Game Changing Capability with Superior Fuel Efficiency and Reduced Emissions

"A primary long-term goal in aircraft propulsion is to reduce system specific fuel consumption by more than 30 percent over (current) gas turbine engines. . . Technical challenges being pursued include: efficient, high-overall-pressure-ratio compression systems; variable-cycle engine technologies; advanced high-temperature materials and more effective turbine blade cooling; and techniques to more efficiently recuperate energy while satisfying thermal and power requirements."

Adaptive
Versatile Engine
Technology
(ADVENT)

Adaptive Highly
Efficient Embedded
Turbine Engine
(HEETE)

Efficient
Small Scale Propulsion
(ESSP)

Advanced Affordable

Turbine Engine

(AATE)

APPROVED FOR PUBLIC RELEASE, Case Number 88ABW-2010-1467

Reduce Demand <u>AD</u>aptive <u>Versatile ENgine Technology</u> <u>Vision</u>

Multi-design point engines that automatically adjust fan & core airflow and pressures for optimized performance & fuel efficiency at all flight conditions

Reduce Demand <u>Highly Efficient Embedded Turbine Engine</u>

ISR

Product Vision:

 Develop <u>fuel efficient</u>, subsonic propulsion that supports future ISR, UAVs, tankers and mobility extreme endurance and range requirements

Approach:

 Combine next-generation, ultraefficient cores with adaptive features and advanced thermal management

HEETE Supporting Multiple Systems

Benefits:

- 35% improvement in fuel efficiency
- Fuel efficiency at part power
- Reduced emissions & noise
- Increased power extraction

Tactical Transport Benefits

Transports / Tankers

UAV's

Reduce Demand Advanced Affordable Turbine Engine (AATE)

3000 HP CLASS

CRITICAL TO SUPPORT ARMY AVIATION MODERNIZATION STRATEGY
FOR BLACKHAWK AND APACHE

GOALS

HIGH PERFORMANCE

ROBUST

AFFORDABLE

-25% Specific Fuel Consumption +65% Horsepower/Weight 6,000 hours design life

-35% Production Cost

15,000/7,500 cycles LCF cold/hot parts

-35% Maintenance Cost

APPROVED FOR PUBLIC RELEASE, Case Number 88ABW-2010-1467

Reduce Demand

Efficient Small Scale Propulsion

Technologies:

- High Bypass Ducted Fan
- High Pressure Ratio Compression
- Variable Cycle Features
- Direct Fuel Injection Combustion
- Micro Fuel Delivery and Power Generation Components

Benefits:

- 30% Improvement in Fuel Efficiency
- 2X Increase in Loiter Time/ Range
- Integrated / Distributed Power
- Conversion to JP8/ Heavy Fuel

Emerging turbine and Internal Combustion Engine technologies for UAS / missiles

Reduce Demand Component And Engine Structural Assessment Research

Single engine demonstrator supports durability validation for multiple technology programs

Probabilistic High Cycle
Fatigue (HCF)
Prediction & Time of
Arrival Sensors

Vibration Damping Coatings for HCF

Integrally Bladed Rotors

FOD Tolerant Design System

Fuel Management for Augmentor Screech Reduction

Thermal Management

Safety & Affordable Readiness

Life Cycle Cost

Thrust Growth

Cruise Efficiency

Noise Characterization

CAESAR

Joint Air Force/Navy Affordable Test Bed

VAATE is our Nation's Planning and Execution Construct for Turbine Engine Technology

THE MISSION

To develop, demonstrate, and transition

ADVANCED

multi-use, Turbine Engine technologies that provide a revolutionary improvement in

DFFORDABLE CAPABILITY

to a broad range of legacy, emerging, and future military propulsion and power needs, with explicit

UERSATIULITY

for dual-use application.