

#### U.S. Army Research, Development and Engineering Command



#### **TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.**

#### **Propulsion System Design in Low Pressure Gun Systems**

Carlton Adam, ARDEC 18 May 2010

#### Introduction



- A significant trend in large caliber ammunition today is demands for guided, non-line-of-sight munitions.
- These munitions typically rely on seekers, sensors, and aerodynamic control surfaces, i.e. delicate components.
- These qualities make the projectiles more fragile than the legacy ammunition that rely on overwhelming velocities or explosive mass to defeat targets.
- Such munitions require softer gun launches which pushes towards the low-end of the envelope of gun system performance.
- Since at least from the development of the MGM-51 Shillelagh in the 1960's, armaments engineers have struggled to find a good way to launch a missile-like projectile from a gun.

#### **Two Totally Different Performance Regimes** HIGH PERFORMANCE/HIGH SOFT LAUNCH/LOW ENERGY PERFORMANCE

- Use all available gun tube strength to generate high pressures.
- Increase projectile weight or muzzle velocity as high as possible without damaging recoil system. Faster and heavier is better.



- Keep pressures and accelerations low to allow a wider variety of electronics and airframe options.
  - Lift-generating and rocket powered projectiles need only a small initial velocity, however the gun typically needs a minimum velocity to cycle without jamming.



## About the Presentation

- The purpose of this presentation is to communicate to the gun and propellant engineering community the lessons learned regarding munitions design in a low-pressure, low-velocity system.
- The Mid-Range Munition (MRM) program is referenced often because it is the best example of this theme, however this will not be a presentation of the MRM program per se.

#### Brief Overview of the MRM Round







#### Key Requirements:

- Launched from 120mm Abrams main gun
- Has same survivability as legacy tank ammo, e.g.
  - Resistance to inadvertent ignition of energetic components
  - Resistance to physical threats such as being dropped or crushed

## Major Problem Areas

- 1. Incomplete propellant combustion (safety hazard)
- 2. Large amounts of paint residue from cartridge case (interferes with the chambering of subsequent rounds)
- 3. Low recoil resulting in unreliable operation of the breech mechanism (gun prone to jamming)

# **Propellant Design**

- St. Marks Hybrid® was chosen for favorable pressure/velocity ratio
- Propellant combustion time was maximized to keep gas pressure and projectile acceleration at a minimum

Base Pressure vs. Time for Propellant Burn-out as a Percent of Firing Time





- Area under pressure vs. time graph is proportional to muzzle velocity
- Therefore, the two graphs result in the same velocity, although one exerts a lower peak force on the gun and projectile

## **Propellant Design**

- Lengthening the time interval over which the propellant burns increases the risk of incomplete propellant combustion
- This is well-understood, however low pressure environments present a problem
  - Propellant burn rate usually not well-studied at low pressures
  - Closed bomb testing usually not optimized for pressures less than 70 MPa
  - Propellant burn rate is not linear, and large errors result from extrapolating burn rates from higher pressure regimes
- Without accurate burn rate data, propellant grain design becomes difficult and relies more on trial-anderror than solid engineering design.

#### **Propellant Design Conclusions**

 Explore the low-pressure behavior of propellants more thoroughly:

- Optimize closed bomb test setup for lower pressures.
- Employ alternative test methods (strand burner) that are better suited for measuring burn rates at low pressures.



Strand burner and closed bomb images courtesy of Design Integrated Technology, Inc.



## Paint Residue

- The primary purpose of the paint is to *resist combustion* when the ammunition is subjected to external ignition threats such as sparks, flame, and hot surfaces.
- This conflicts with the requirement that the paint be fully consumed or ejected from the gun after the shot.
- Legacy ammunition is painted with an aluminized epoxy paint that meets both these requirements.
  - This paint was used for the first-cut MRM round for lack of any alternative and to avoid the design and qualification costs of developing a new coating.





## Paint Residue



- Initial ballistic testing showed large amounts of unconsumed paint after almost all cold and ambient shots
- An investigation into this phenomena revealed several interesting things about the paint:
  - This paint does not burn per se, since its ignition temperature is above the propellant flame temperature.
  - The paint degrades slowly under high heat.
  - In legacy systems, a large amount of the paint is not consumed, but is instead fractured into small pieces and blown out of the gun (evidenced by confetti-like pieces of paint found in front of the gun)
  - This fracturing is believed to be caused by turbulence during the ballistic cycle.

## Paint Residue

Three major factors were postulated that contribute to paint residue:

- Low pressure results in less mechanical action working on the paint, leaving behind larger chunks.
- Low projectile/gas velocity results in less paint being expelled from the gun.
- The combustible case protects the paint for a large portion of the ballistic cycle, specifically the portion where gas turbulence is highest.



## Paint Residue Conclusions

- Try to understand paint behavior during ballistic cycle better.
  - Tailor the paint formulation and thickness to balance between low residue and good combustible case protection.
- Investigate alternative combustible case formulations with increased burn rate.

### Impulse, Recoil, and the M256 Cannon

Recoil: Distance traveled by the moving parts of the gun in reaction to the motion of the projectile.Impulse: Momentum (force × time) felt by the gun due to the motion of the projectile.

- Breech on M256 cannon opens automatically at the end of the shot cycle
  - This is accomplished by compressing a spring using the recoil of the gun, then using the spring to drive a cam that opens the breech.
  - This operation is expected to be reliable by the tank crew; a breech that fails to open is considered a malfunction.
- Recoil is controlled by the spring and a hydraulic damper.

### Low Impulse/Low Recoil

- Since impulse is mostly generated by the momentum of the projectile (mass × velocity), low velocity results in low impulse and shorter recoil.
  - Critically short recoil will prevent the breech from engaging the cam and the breech will not open.
- Although the M256 breech assembly functioned reliably during MRM ballistic testing, the gun was always at "Yuma Ambient" temperature (70+ °F)
  - In a cold gun, the hydraulic fluid is more viscous and exerts more damping force on the gun.
- MRM recoil was at the lower limit of that required for reliable breech operation, according to recoil models.

# Limiting Temperature

#### MRM Impulse Generated and M256 Impulse Required as Functions of Temperature



#### **Recoil and Impulse Conclusions**

Increase fidelity of recoil models

- Include effects of dimensional tolerances and worn parts
- Supplement modeling efforts with recoil/impulse data from cold and hot-conditioned guns
- Include minimum recoil as a design requirement (duh).

Begin designing guns that tolerate larger ranges of impulse across larger temperature ranges.

## Conclusions

- Low pressure gun systems create obstacles that are just as challenging as their high-pressure counterparts.
- These challenges require different strategies and different ways of thinking about the gun system.
- New tools and test methods may be required to overcome these obstacles.

## Acknowledgements

Monica Curcione – General Dynamics, Ordnance and Tactical Systems Jim Drummond - General Dynamics, Ordnance and Tactical Systems John Bednarz – Raytheon Office of the Program Manager for Maneuver Ammunition Systems (PM-MAS) – *Picatinny* Arsenal, NJ