Innovation ... Delivered.

Mr. Chris Still Principle Investigator ATK Small Caliber Systems Lake City Army Ammunition Plant Mr. Mark Leng Project Manager US Army ARDEC Picatinny Arsenal

OSR Approval #: 10-S-1445

ATK

Research And Development Effort: Fabricate A 5.56mm Aluminum Cartridge Case

- Latest In Aluminum Alloys
- Advanced Coating Technologies
- Advanced Lubrication Technologies
- Use Both New And Existing Metal Forming Capability

- Reduce Ammunition Weight
- Develop An Alternate Material For Cartridge Cases
- Reduce Sole Dependence On Brass

Lighter Ammunition For Today's Warfighter

Requirements

A premier aerospace and defense company

- Review Technical Papers (1956 through 2004)
- Design A 5.56mm Aluminum Alloy Case
- Design & Analyze Tooling And Processes For Case Forming
- Test, Evaluate And Select Coatings And Sealants
- Test And Select The Best Alloy
- Evaluate The Implementation Of Case Production Process
- Report Recommendations Based On Scope Of Work

Research, Design, Build, Test, Report

Project Team

Project Phases

Advancing Technology

A premier aerospace and defense company

Fabrication Of An Aluminum Case Using ATK Small Caliber Systems Capabilities

²⁰1956 .50

- Knowledge Of High Rate Small Caliber Ammunition Manufacturing •
- Metal Forming At High Production Rate
- Application Of Coating & Sealant •
- Forming Tool Design
- Low Rate Lab Production
- **Ballistic Test Facilities** ۲
- FFA Simulation •
- Heat Treatment Process Knowledge

2004 5.56mm case Case 1970-1976 fabrication. 5.56mm case Ballistic testing. Burn through Process characterization. development. 1965-1970 Case coating 5.56mm case studies. Burn through Failure Modes. problem identified. Caliber case

Gradual Advancement of Technology and Knowledge Base For Production Of Aluminum Cased Combat Ammunition

A premier aerospace and defense company

We Have a Knowledge Base

Supporting The Design, Development And Production

Of A 5.56mm Aluminum Case

Learn From The Past To Move Forward

Burn Through Problem – Frankford Arsenal

A premier aerospace and defense company

Effort

- Early Work Indicated Burn Through As An Obstacle
- Burn Through Is The Erosion Of The Aluminum Caused By Hot Gases Reacting To A Compromised Surface
- Further Work Showed A Reaction To Oxygen And Aluminum

Conclusions

- Proposed a Weapon/Ammunition System Solution To Isolate The Problem
 - 1. Modify The Weapon Chamber Design To Seal The Chamber
 - 2. Modify The Case Design to Seal The Chamber

Systematic Approach To Design - Isolation And Means Of Elimination

Effective Inhibitors – Thiokol Chemical Corporation 1972-1973

A premier aerospace and defense company

Effort

- Tests Performed On Six Coatings To Find Inhibitor To Burn Through
 - Toughness
 - Thermal Stability
 - Elasticity
 - Insulation Capability
- Test Samples Damaged To Simulate Field Failures
- Ammunition Was Fired And Results Analyzed

Conclusions

- Identified Proprietary Formulation Composed Of A Polysulfide As Best Coating
- Suggested Polysulfide Pre-Form Cylinder Inserted Into Case Before Loading

Use Internal Coatings Prevent Burn Through

Failure Mechanisms – Frankford Arsenal 1976

A premier aerospace and defense company

Effort

- Studied Failure Mechanisms Of Burn Through
 - Not Caused By Interior Surface Burning Through
 - To The Outside Of The Case
 - Burn Through Is A Result Of A Gas Path During Firing
 - Duplicated By Drilling A Hole In The Case Head
 - Duplicated By Creating A Scratch On the Outside Of The Case
 - Initiated By Oxidation Of Aluminum Vapor By CO2 And H2O Created By Propellant Burn

Conclusion

- Gas Path Caused By A Mechanical Defect Such As A Structural Flaw Or Insufficient Strength Of The Case Material
- Burn Through Inhibited By A Rubber Liner

Burn Through Caused By A Gas Path -Duplicated The Problem

Case Concept – ATK 2004

A premier aerospace and defense company

Effort

- Designed a 5.56mm Aluminum Cartridge Case
- Fabricated Forming Punches And Dies.
- Developed A Cartridge Case Manufacturing Process
- Fabricated Samples For Testing In M249 And M16A2
- Performed Ballistic Tests
- Identified Coatings As A Solution To Burn Through

Identified Areas For Improvement

- Improve Case Design
- Improve Vacuum Test Results
- Improve Bullet Extraction

Process Development – Case Production

ATK

- 1. Burn Through
 - Erosion Of Case Caused By Hot Gases Reacting To Compromised Surface
 - Solution Method: Identify Coatings Capable Of Eliminating Burn Through
- 2. Long Production Cycle Times
 - Aluminum Case Production Requires Additional Heat Treat Requirements
 - Solution Method: Identify Most Effective Method Of Heat Treat To Meet Performance Cost And Ease Of Fabrication
- 3. Various Advanced Alloys Available
 - Solution Method: Test, Evaluate And Down-Select to Meet Cost, Performance, and Feasibility Criteria

Burn Through, Heat Treat Cycle Time, Alloy Selection

Use Coating And Sealant To Prevent Burn Through And Meet Specification Requirements

Leveraging Experience From Previous Technological Advancements

- May Require Up To 25 Hours Of Heat Treatment
- Many Process Steps
- Batching Not Desirable In A Continuous Flow Production Environment

Brass Case Fewer Process Steps Highly Automated1200 Parts Per Minute

A premier aerospace and defense company

Cycle Time A Constraint To High Rate

Alloy Selection

A premier aerospace and defense company

ALCOA DEFENSE

Two Aluminum Alloys Under Evaluation

FEA Material Models

A premier aerospace and defense company

Color Contours Indicate Plastic Strain After Applying Firing Pressure

Brass Case Is The Design Basis For Aluminum Case

Aluminum Case Must Be Thicker To Achieve Performance Of Brass

Firing Pressure Strain

A premier aerospace and defense company

Past Efforts Investigated Aluminum Alternatives To Brass For Cartridge Cases	
Design Time Reduced By Lessons Learned From Past Efforts	

Objective - Develop Solutions To Burn Through Problem

Objective - Design Production Process For LCAAP

Test And Evaluate Two Aluminum Alloys

Reduce Cycle Time Constraints To High Rate Production

- 1. The Aluminum Cartridge Case "Burn-Through" Problem Characteristics Isolation and Means of Elimination. Donnard, Grandy, Skochko, Squire. Department of the Army Frankford Arsenal. Philadelphia, PA
- 2. Prevention of 5.56mm Aluminum Cartridge Case Burn-Through. Marziano, Vriesen, Thiokol Chemical Corporation, 1975.
- 3. A Critical Assessment of the Aluminum Cartridge Case Failure Mechanism. Squire, Donnard, Frankford Arsenal, Report no. FA-TR-76011, 1976.
- 4. Aluminum Cartridge Case Concept. Tasson, Alliant Techsystems, 2004.

Contact Information

A premier aerospace and defense company

Chris Still

- **ATK Small Caliber Systems**
- 816-796-7371
- Chris.Still@atk.com