

M865



### Development of a Solventless Propellant for use in 120 mm Tank Training Rounds

The National Defense Industrial Association's Joint Armaments Conference, Exhibition, & Firing Demonstration

### 19 May 2010

Dr. Shawn Osborn Propellant Development Engineer ATK Energetic Systems

M1002

#### Dr. Thelma Manning U.S. Army TACOM-ARDEC Picatinny Arsenal



## Outline



### M14 Replacement in 120 mm Tank Training Rounds

- Program Summary
- Background
- Program Requirements
- Solventless Propellant Production Process
- Previous Accomplishments with PAP8386 Propellant
- Current M14 Replacement Approach DEGDN-free PAP8386 Modified PAP8386
- Formulations and Closed Bomb results for DEGDN-free PAP8386
- Future Work
- Conclusions



- <u>Sponsor:</u> PM MAS
- <u>Customer</u>: JMC/ARDEC
  - End User (Army and USMC)
- Funding Source: Army and USMC
- <u>Contracts</u>:

 $\bullet \ JMC \to ATK \ AW \to ATK \ ES$ 

• <u>Objective</u>: Per request of PM Large Caliber Ammunition, develop

a solventless propellant that meets the M865 and M1002 ballistic requirements, and can be used with the suite of 120 mm future rounds

- Optimize solventless formulation
- Optimize propellant web
- Demonstrate desired ballistics of M14 replacement propellant

# Background



#### A premier aerospace and defense company

#### M14 Propellant Characteristics

| Ingredient, wt. %    | M14       |
|----------------------|-----------|
| NC, 13.15% N         | 90.0 2.0  |
| DNT                  | 8.0 2.0   |
| DBP                  | 2.0 1.0   |
| DPA (added)          | 1.05 0.15 |
| Graphite (added)     | 0.06 0.04 |
| Residual Solvent     | 0.7 Max   |
| Moisture             | 0.6 0.2   |
| Flame Temp., [K]     | 2774      |
| Force, [J/g]         | 995       |
| Abs. Density, [g/cc] | 1.60      |

#### M14 Propellant Drawbacks

- Damaged cartridges may vent residual solvent (diethyl ether)
- DNT, DBP and DPA are environmentally undesirable
- IM Properties poor compared with tactical ammunition



#### M865 TPCSDS-T

Projectile Weight = 5.50 kgMV (21 C) =  $1700 \quad 20 \text{ m/s}$ MV (52 C) =  $1740 \quad 20 \text{ m/s}$ MV (-32 C) =  $1620 \quad 30 \text{ m/s}$ Pressure (63 C) <= 5900 barsM14 Charge Weight = 7.2 kg

<u>M1002 MPAT-TP-T</u> Projectile Weight = 10.55 kg MV (21 C) = 1375 10 m/s MV (52 C) = 1404 10 m/s MV (-32 C) = 1335 10 m/s Pressure (63 C) <= 6400 bars M14 Charge Weight = 7.6 kg





- 1. Eliminate (or reduce) residual solvents.
- 2. Meet existing ballistic requirements for the M865 and M1002.
  - Min. M1002 velocity at -32 C
  - Meet velocity tolerance from -32 C to +52 C
  - Average max. pressure at +63 C at least 3 Std Dev. below the fatigue limit of the M256 gun tube (7000 bars)
  - Meet negative delta p requirements of ITOP 4-2-504(2) and not affect safety or structural integrity
  - Meet ballistic requirements per DTL 14000022
- 3. IM standards equivalent or better for each round.
- 4. Affordable solution relative to existing M14 costs.
- 5. Environmentally friendly formulation and process.
- 6. Producible at the quantities required to meet near term cartridge needs.
- 7. Propellant compatible with existing cartridge materials.
- 8. Propellant shall not negatively impact barrel/gun tube life.
- 9. Propellant storage life and hazard classification meet existing requirements.

# Solventless Propellant Manufacturing Process

A premier aerospace and defense company

Solventless process eliminates risk of damaged cartridge venting ether



**Carpet Roll** 

# Solventless propellant manufacturing process at the Radford Army Ammunition Plant

## **Previous Work With PAP8386 Propellant**





| Thermochemical Parameter       | Value  |
|--------------------------------|--------|
| Flame Temperature, [K]         | 2948   |
| Force, [J/g]                   | 1063.6 |
| Gas Molecular Weight, [g/gmol] | 23.049 |
| Covolume, [cc/g]               | 1.042  |
| Frozen Gamma                   | 1.244  |

- Solventless Manufacture
  - Completely Eliminates Potential of Solvent Vapor Ignition Within Round
- Material Properties Similar to JA2
  - Improved Impact Sensitivity
- Environmentally-Friendly Formulation
  - Eliminates DNT, DPA, DBP, and all VOC's
- Same Ingredients as JA2 and RPD-380
  - Compatible with existing systems
  - 1.3c Hazard Classification
  - Similar Storage Life
- Flame Temperature < 3000 K
  - Low barrel Erosion

# M865 Performance Using PAP8386 Propellant





# M1002 Performance Using PAP8386 Propellant

A premier aerospace and defense company



Results Shown are Predicted 15.4 lb Charge Weight Adjusted Based on February 2006 Firing Data At Aberdeen Test Center with a 15.6 lbs

# Current Approach to Replacing M14 Propellant

A premier aerospace and defense company

# **Dual path**

#### Preferred Path -- Replace DEGDN in PAP8386

✓ Higher technical risk, lower potential per pound cost for formulation

#### Alternate Path -- Build on previous PAP8386 work

- Lower technical risk, higher potential cost per pound for formulation (but less expensive than original PAP8386)
- ✓ May require a change to the firing tables



# **Preferred Path to M14 Replacement**



#### • Replacing DEGDN in PAP8386

- Combination of NG and inert plasticizer to mimic ballistic potential of PAP8386
- Inert plasticizers chosen based on literature as well as melting point, boiling point, density, and solubility



### **Inert Plasticizers**



- Replacing Lint NC in PAP8386
  - Utilizing wood pulp NC for affordability and possible processing benefits
  - Various NC nitration combinations (influences processability and mechanical properties)



% Nitration (12.0 – 13.5)



### **<u>11 Formulations (NG and inert plasticizer to replace DEGDN)</u>**

- 7 processed, 4 did not process
- Formulated to PAP8386 ballistic potential
- Formulated toward a desired plasticizer/binder ratio
- High level of success processing various types of nitrocellulose
  - Wood pulp and cotton linters (12.0 13.5 %N)
- Two plasticizers processed well
- Four plasticizers yielded unprocessable propellant sheets
- Completed closed bomb analysis on sheetstock of successful formulations

### Successfully processed alternative to PAP8386 propellant

# M14 and PAP8386 Propellant Burn Rate Behavior

A premier aerospace and defense company



Pressure (MPa)

# Theoretical Density of M14 Replacement Propellants



- Solventless propellants exhibit lower theoretical densities
  - Most inert and energetic plasticizers are less dense than Nitrocellulose
  - More plasticizers are necessary to process solventless propellant

# **Propellant Burn Rate at 200 MPa**





- RPD-561 through 567 have similar burn rates to PAP8386
  - Changes to the final grain geometry would be necessary to reach or exceed PAP8386 burn rates
  - 120 mm gun data is essential in determining the optimal propellant formulation



- Temperature sensitivities are similar between all propellants
  - RPD-561 through 567 could be feasible PAP8386 replacements

Change in burn rates between temperatures is higher than M14 propellant



### 14 Formulations (NG and inert plasticizer to replace DEGDN)

- Formulated to PAP8386 ballistic potential
- Examined processing NC at various nitration levels (11.95-13.15 %N)
- Formulated with a fixed plasticizer/binder ratio
  - Lower ratio to aide processing of inert plasticizers
- 1 processed, 13 did not process
- One plasticizer processed acceptable propellant sheets
- Five plasticizers yielded unprocessable propellant sheets
- Awaiting closed bomb analysis on sheetstock of successful formulation

### Plasticizer/binder ratio plays a significant role during processing



### **Conclusions**

- Examined various novel inert plasticizers for solventless propellant development
- Successfully developed a cost effective version of PAP8386
  - Closed bomb results indicate propellants with similar burn rate characteristics

### <u> Technical Risks</u>

- Meeting M1002 minimum velocity at -32 C
- Exceeding M1002 pressure requirement at 63 C
- High pressure cold due to propellant breakup

### Future Work

- Perform additional evaluations
- Downselect two propellants for ballistic testing
- Charge establishment and charge verification
- Initial ballistic evaluation of M865 and M1002 rounds
- Propellant web optimization study
- Ballistic test of final propellant at temperature extremes





- The authors would like to thank the following:
  - PM MAS for funding
  - Major Patrick Baker for presentation comments and suggestions
  - ATK Advanced Weapons for technical input and assistance
  - Jeremy Smith, Curtis Rupe, Jim Wedwick, and Dr. Steve Ritchie of ATK – Energetic Systems for assistance in propellant manufacture



# **QUESTIONS???**

Shawn Osborn

**Principal Engineer – M14 Replacement** 

**ATK– Energetic Systems** 



shawn.osborn@atk.com



