

NDIA Joint Armaments Conference

Presentation

19 May 2010

- I. Rushford Hypersonic (Overview)
- II. Hypersonic Plasma Particle Deposition (HPPD)
- III. Applications
- IV. Open Forum

Rushford Hypersonic

Hypersonic was founded in October of 2007 and was facilitated and supported by:

The Rushford Institute for Nano Technology
Rushford, MN - Economic Development Authority
Southern Minnesota Initiative Foundation
U of MN – Office of Technology Commercialization

Location - Rural S.E. Minnesota

The work force is well educated and posses a strong work ethic!

Manufacturing floor space, utilities and labor are much lower than in major metropolitan areas! It is estimated that Hypersonic has saved in the range of \$1.5 - \$2.2 million to date due to the lower costs in a small community vs. locating in a major metropolitan area and less turnover of labor force.

Rushford Hypersonic (Overview cont.)

Hypersonic was founded to utilize the University of Minnesota's <u>Patented - Hypersonic Plasma Particle Deposition</u> (HPPD) and <u>Focused Beam</u> (FIB) processes (which Hypersonic has <u>exclusive</u> <u>rights</u>) to coat and or modify high wear surfaces such as Gears, Bearings, Compressor wheels, Rotor-Blade Wear strips, Cutting tools and Implantable medical devices, etc... with the focus on

Rushford Hypersonic (Overview cont.)

Increasing the Mean Time Between Failure

thus *<u>Reducing the end cost</u>* of the product by:

- Extending the useful life span of the part or tool
- Reducing change over time
- Increased Service Life
- Less Scrap due to increased life span and reduced dimensional and thermal changes during operation of the part or tool

Hypersonic Plasma Particle Deposition

(HPPD)

- The <u>*Patented*</u> HPPD process is a "Innovative process in which Hypersonic particle impaction is crossed with a thermal plasma CVD.
- ► In this process we add various reactant materials and then disassociate them into their atomic elemental states in a reactor (*Intellectual Property*) which operates between (4,000 10,000°K^{+/-}).
- We then reassemble the elements into nano-particles ranging from ~2nm 20nm in size and of the material composition we have designed for the specific application.
- The particles are then accelerated and impact the substrate at hypersonic velocities of Mach 8^+ in which they go thru a phase-change upon impaction with the substrate and form a chemical weld in addition to the cut impaction of $\sim 3 5$ nm.

distance from nozzle inlet

Inherent CVD then fills in pores left by nano-particle impact

SiC film morphology

Pin-on-disk wear track at r = 6 mm

Qualitatively, wear resistance appears excellent

SiC film morphology

University of Minnesota Characterization Facility

X-ray Scattering Lab

Mo sample with thick coating

... The SiC is moissanite, the hardest material known and the ideal coating.

Sample #	E _r (GPa)	H (GPa)		
Sample #	Ave ± StDev	Ave ± StDev		
4	254.7 ± 11.2	37.01 ± 1.95		

 Table 1. Results from fracture toughness tests

Test	Peak Load	Crack Lengths (µm)			Kc	
#	(mN)	1	2	3	Ave	(MPa*m ^{1/2})
1	30.00	0.97	0.93	0.82	0.90	3.29
2	30.00	0.97	0.98	0.93	0.96	3.02
3	30.00	0.90	0.93	0.84	0.89	3.37
4	30.00	1.06	1.04	0.77	0.96	3.02
					Ave	3.17

Why HPPD is Different!

- *HPPD deposition material is 30-50% harder* than the most industrial Ceramic Carbide material in use ><u>36GPa.</u>
- The *HPPD coating produced is up to 100% more fracture resistant* than current materials going from ~ 3MPa m^{1/2} to 6⁺MPa m^{1/2}
- 3. Superior Wear Resistance

1.

2.

- 4. Deposition of HPPD process is up to 1000x faster than current CVD Processes
- 5. HPPD coatings are chemically welded to the substrate vs. just being a coating
 - Rushford Hypersonic LLC has Licensed exclusive rights from U of MN for HPPD and FIB technology

Connaughty Industries In house analysis run of Rushford Hypersonic LLC's HPPD coated Drill bits vs. HSS - Carbide and Cobalt

Dry Drilling Analysis

Customer / Collaboration Base

University of Minnesota HPPD Lab Machine

Hypersonic's HPPD-001 Deposition Chamber

Contact Information

www.rushhypersonic.com

Rushford Hypersonic LLC

A Cutting Edge Nanotechnology Company 1000 Technology Dr. Rushford, MN 55971 Business: (507) 864–4773 Fax: (507) 864–4771