

The Rarefaction Wave Gun Program

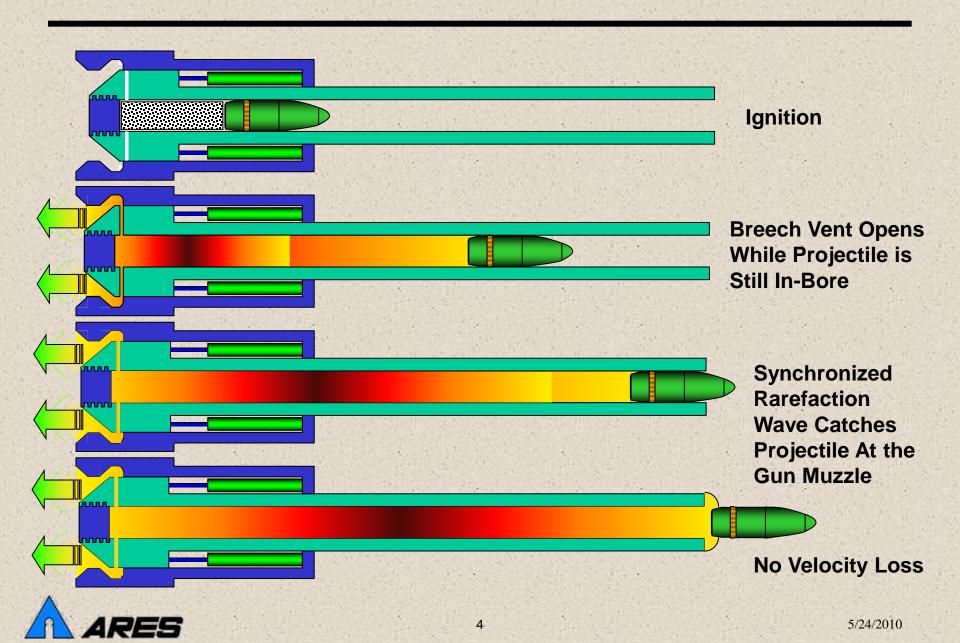
A Government and Industry Collaboration to Develop 21st Century Cannon Systems

Presented by : Mike Bixler, ARES, Inc. (419) 635-2175 mike.bixler@aresinc.net

21st Century Cannon Systems

- LW vehicles w/ large caliber guns
 - Considerable momentum and kinetic energy imparted to system
- Engineering barriers
 - Mitigate recoil
 - Reduce weight
- RArefaction waVE guN (RAVEN)
 - Army After Next project (1999)
 - Dr. Eric Kathe doctoral thesis (2001)
 - Engineering & demo. (2005 2010)

RAVEN Propulsion – Objectives


- High lethality weapons on lightweight vehicles
- Mitigate recoil
 - Recoilless early venting achievable
- Reduce thermal load
 - Reduced gas density
 - Reduced gas temperature
 - High rate-of-fire capability
 - Sustainable fire
- Maintain ballistic efficiency
- Maintain muzzle velocity
- Minimize impact to vehicle

Notional RAVEN Cannon Mounted upon a Lightweight Robotic Vehicle

Lightweight materials to reduce system weight

RAVEN Propulsion – Operation

RAVEN Propulsion - Challenges

- Vent method and mechanics
 - Blow-back bolt
 - Recoil actuated
 - Rupture disk
- Back blast
 - Overpressure
- Ammunition loading
- Gun system integration

Notional 45mm RAVEN Automatic Cannon Mounted upon a RIPSAW Robotic Vehicle

RAVEN Program – Accomplishments

• Proof-of-Principle

- 35mm demonstrator
 - RAVEN propulsion validation
 - Vent mechanics experimentation
- System Advancements
 - 105mm demonstrator
 - Converted FCS_MRAAS cannon w/cased telescoped ammunition
 - Inertial breech vent
 - Ammunition handling system
 - 45mm demonstrator
 - Converted COMVAT automatic cannon
 - Blow back bolt & ammunition based vent
 - Ammunition development

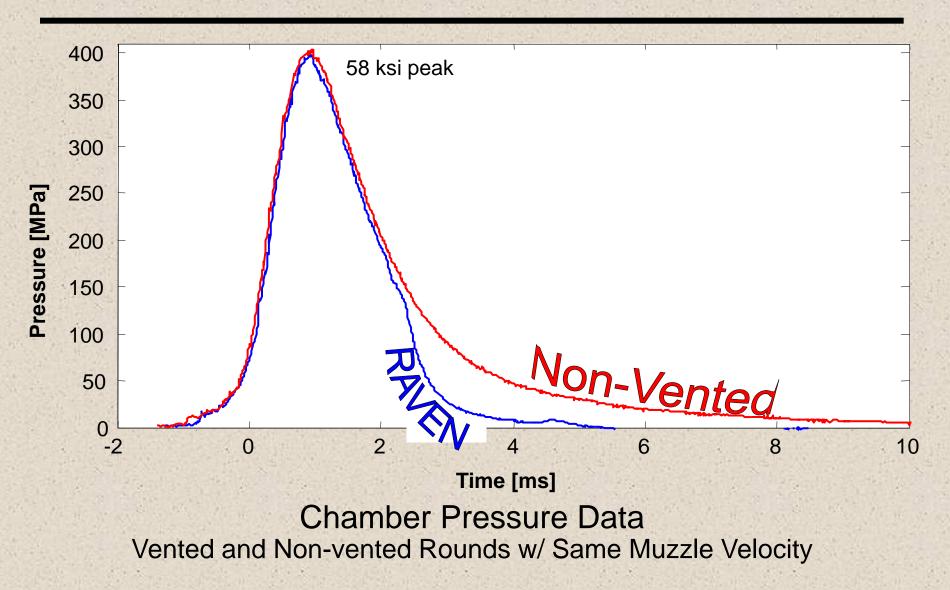
RAVEN Program – Accomplishments

- Firing Tests
 - 105mm Demonstrator
 - Synchronized rarefaction wave demonstrated
 - 45mm Demonstrator
 - Closed breech baseline
 - Pre-synchronized venting (recoilless operation)

Accomplishments – 35mm Demonstrator

- Design
 - Based on Oerlikon KD series 35mm anti-aircraft gun
- Vent Method
 - Ammunition-based rupture disk
 - Intentionally 'uncorks' the breech
 - Blow-back bolt
 - Propelled rearward by impulse from propellant gases
 - Timing
 - Driven by same propellant gases as bullet
 - Governed by bolt mass bolt and distance to 'uncork'

Accomplishments – 35mm Demonstrator


- Proof-of-principle tests
 - Synchronized & pre-synchronous venting (60 shots)
 - Maintained muzzle velocity when synchronized
 - Recoilless when pre-synchronous
 - Significant reductions in
 - Barrel heating
 - Recoil momentum

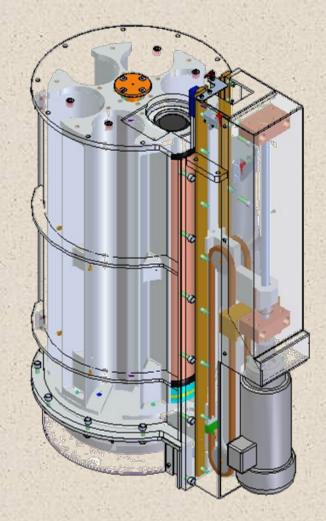
- Experimental results

Measurement	Units	Closed Breech	RAVEN	% of CB	
		Baseline	Results	Baseline	
Muzzle Velocity	m/s	1,135	1,131	100%	
Barrel Heating (ΔT)	K	3.61	2.13	59%	
Momentum	N-s	1,031	402	39%	

Accomplishments – 35mm Demonstrator

Accomplishments – 105mm Demonstrator

- Design
 - FCS_MRAAS 105mm smooth bore swing chamber cannon
- Vent method
 - Bolt face nose, integrated blowback bolt, and exhaust nozzle



- Impulse acts on bolt face
- Combined inertia of bolt and exhaust nozzle delay venting
- Timing
 - Governed by mass of inertial breech and required travel distance of bolt face seal to vent

Accomplishments – 105mm Demonstrator

- Ammunition Handling System
 - Design
 - Based on 75mm XM274 autoloader
 - Vertical carousel
 - 6 rounds
 - Rotary motor driven Geneva indexing mechanism
 - Feeder
 - Ball screw driven
 - Rate of fire
 - 15-20 shots/min (targeted range)
 - 17 shots/min (designed)

Accomplishments – 105mm Demonstrator

- Firing tests
 - Synchronized & pre-synchronous vent (14 shots)

Experimental results

Measurement	Units	RAVEN Results		
Measurement	Units	Predicted	Actual	
Muzzle Velocity	km/s	1.49	1.37	
Momentum	kN-s	14.0	12.7	

Accomplishments – 45mm Demonstrator

- Design
 - 45mm COMVAT automatic CTA cannon
- Venting Method
 - Ammunition rupture disk
 - Consumable exhaust throat
 - Inertial bolt with brake
 - Controls vent displacement over time
 - Timing
 - Governed by material properties and geometry of rupture disk and bolt mass

Accomplishments – 45mm Demonstrator

- Ammunition development
 - Converted from percussion primer
 - Challenges
 - Integrating electric ignition train into cartridge
 - Maintaining high pressure seals

45mm RAVEN Cartridge

Accomplishments – 45mm Demonstrator

- Firing tests
 - Closed breech baseline (21 shots)
 - Pre-synchronous vented recoilless (4 shots)
 - Unimpeded baseline vent, bolt brake not included
 - Impeded vent, bolt brake included
 - Experimental Results

Measurement	Units	Closed Breech	RAVEN	% of CB	RAVEN	% of CB
		(CB) Baseline	(no brake)	Baseline	(w/ brake)	Baseline
Muzzle Velocity	ft/s	3,636	2,326	64%	2,837	78%
Chamber Pressure	ksi	54	45	83%	49	91%
Barrel Heating (∆T)	°F	79	21	27%	37	47%
Recoil Travel	in	3.49	0.10	3%	0.16	5%

RAVEN Program – Objectives

- Demonstrate RAVEN Propulsion Objectives
 - Reduce recoil impulse, thermal loads, and system weight
 - Maintain ballistic efficiency and velocity for synchronized venting
 - Demonstrate repeatability
 - Accurate vent timing predictability
- Model validation
 - Confirm interior ballistic performance
 - Verify heat transfer predictions
 - Verify gas discharge behavior
- Integrate RAVEN into lightweight vehicle platform
- Demonstrate minimum impact on vehicle dynamics
 - Vehicle movement

RAVEN Program – Task Schedule

Jun-Aug 2010

Synchronization Tests

- 45mm & 105mm
 - Fire single shots
 - Achieve synchronized vent

Sep-Dec 2010

Development Tests

- 45mm & 105mm
 - Install AHS
 - Demonstrate rapid–fire with RAVEN propulsion

Jan-May 2011

Vehicle Integration

- 45mm & 105mm
 - Build platform modifications
 - Install demonstrators onto lightweight vehicles

Jun-Jul 2011

Vehicle Firing Tests

- 45mm & 105mm
 - Fire single shots
 - Demonstrate vehicle response

RAVEN Program – Collaboration Benefits

- Government: WSEC, ARDEC, RDECOM
 - Obtains knowledge in 21st century weapon systems development
 - Gain access to ARES expertise
 - Case Telescoped Ammunition (CTA) design
 - Transitioning prototype designs to mature firing systems
- Industry: ARES, Inc.
 - Upgrades capabilities
 - Design and analysis
 - Manufacturing
 - Testing
 - Expands personnel and expertise

The Rarefaction Wave Gun Program

Acknowledgements

Dr. Robert Dillon, ARDEC, Science Advisor Mr. Gary Moshier, ARDEC, 45mm COMVAT System Mr. Thomas Louzeiro, ARDEC, 105mm CTA

Mike Bixler ARES, Inc. (419) 635-2175 mike.bixler@aresinc.net