

Low Volume, Low Power, Low Cost Advanced Guided Bullet and Mortar Flight Control Actuators

Professor Ron Barrett

Director of the Adaptive Aerostructures Laboratory (AAL) Aerospace Engineering Department The University of Kansas, Lawrence, Kansas USA

AAL ...Backroom for the Innovation-Driven Aerospace Organizations of the world...

Joint Armaments Conference, Exhibition and Firing Demonstration Dallas, Texas 19 May 2010

Outline:

I. Brief Introduction to Adaptive Materials & History

11. New Classes of Adaptive Actuators

III. Summary of Adaptive FCS Properties and Designs

Adaptive Materials

Old Paradigm:

Structural deformations indicate that a given loading state is occurring and must therefore be accommodated.

Adaptive Aerostructures A (Very) Brief Introduction

Most Useful Classes of Adaptive Materials:

Shape-Memory Alloy -High Deflection, Slow, Lots of Power

Piezoceramics -Very Fast, Low Power

First 20 years of Programs with Lineage to Flying Adaptive UAVs

		Project	Mode		Tes	st Techniq	ues	Sponsor
			Techn		Rench	Stand or	Flight	
			or CLPT		Derion	Tunnel	i ligiti	
21	'94-95	Aeroservoelastic Flexspar Fin	3	3	3	3		AAL
22	'95-96	Solid State Adaptive Hiller Servopaddle Rotor (Gamara)	3		3	3	3	NSF
23	'94-97	Flexspar Micro Aerial Vehicle Stabilator (Kolibri)	3		3	3	3	DoD CDTO
24		Barrel-Launched Adaptive Munition (BLAM)	3		3	3		AFOSR
25	'95-97	Smart Compressed Reversed Adaptive Munition (SCRAM)	3		3	3		WL/MNAV
26		Monolithic Rotationally Active Linear Actuator (RALA)	3		3	3		WL/MNAV/Boeing
27	'97-98	Pitch-Active Torque-Plate Wing	3		3	3		AAL
28		Range-Extended Adaptive Munition (REAM)	3		3	3		DARPA
29		Hypersonic Interceptor Test Technology (HITT)	3		3	3		SMDC/Schafer
30	'98-00	Coleopter MAV Flexspar Stabilators	3		3	3	3	DARPA
31	'00-01	Pitch-Active SMA Wing	3		3		3	AAL
32	'00-01	Light Fighter Lethality Fin MicroFlex Actuator	3		3	3		TACOM/ARDEC
33		Pitch-Active Curvilinéar Fin Actuator	3		3	3		AMCOM
34		Shipborne C'measure Range-Ex. Adaptive Munition (SCREA			3	3		TACOM/ARDEC
35		Thunder Multilaminate RALA Fin	3		3			WL/MNAV
36		Centerline Precompression Multilaminate RALA Fin	3		3			WL/MNAV
37		Center Pivot Flexspar Fin	3					ARL
38	2003-		3	3	3	3	3	TUD/TNO
39	2003-	Coleopter PBP Grid Fin	3	3	3	3	3	TUD
40	2003-	Coleopter PBP Turning Vane Flap	3	3	3	3	3	TUD
41	2003-	Twist-Active Wings for Extended-Range Gravity Weapon	3	3	3	3	3	WL/MNAV/Boeing

Overview of Programs with Lineage to Flying Adaptive UAVs

Brief Guided Round History

M712 Copperhead 1975

XM 982 Excalibur & ERGM

Adaptive FCS

Guided Round History

What's needed in a low caliber FCS actuator?

What is needed in such a flight control actuator???

- Setback tolerance: 5,000 200,000g's
- Balloting, setforward, ringing impervious
- Compatible with supersonic control effectors
- Not affected by atmospherics (rain, dust, dirt, snow, etc.)
- 20 yr storage life
- -40 to +145° F
- Lightweight (<1g), Low Volume (<1cc), Low Power (10's of mW)
- High bandwidth (>200 Hz)
- Production shipset costs in single dollars... at most

Flight Control Technologies

Magnetic Field α no. of windings x current

The First MAV... Driving Adaptive FCS

Conventional Electromagnetic 36 components, 830µT @10cm

Adaptive Stabilators

Earth's Magnetic Field: 30 – 60 μT

5 components, 0.6µT @10cm

Advanced UAVs:

Driving the need for Adaptive Actuators -faster, lighter, stronger

Adaptive Surfaces vs. Conventional Servos

- 96% reduction in power consumption
- 16x increase in bandwidth
- 99.2% decrease in slop
- OM reduction in part count
- 12% OWE savings

Interceptors

SMDC HITT Program 1997 - 2000

Hypersonic

5ms Fully Proportional Response

Pitch, Roll, Yaw control

Guiding Lower Caliber Rounds... More History

Barrel-Launched Adaptive Munition (BLAM) Program 1995 - '97

USAF/AFRL-MNAV

- Aerial Gunnery (20 105mm)
- Extend Range
- 2g maneuver

(Eglin AFB tests '97)

(Mach 3.3 tests '96-'97)

- Increase hit probability
- Increase probability of a kill given a hit
- Reduce total gun system weight fraction

Range-Extended Adaptive Munition (REAM) Program 1998 - '99 TACOM-ARDEC (Picatinny-APG) Phase I SBIR

- Guide 50 cal sniper rounds against targets moving up to 100km/hr
- 10cm dispersion @2km under 99% winds, variable grade to 10%

Range-Extended Adaptive Munition (REAM) IRAD 1999 - 2001 BAT-Lutronix Corp. developed supersonic piezoelectric FCS actuators

Flight Control Surface and Actuator Performance

Max Power Consumption: 28 mW Nominal Power Consumption: 3.5 mW Static Power Consumption: < 1μW Design Mach Range: 0.8 - 4.5, STP

Design Accelerations: 25k g's

Shipborne Countermeasure Range-Extended Adaptive Munition (SCREAM) Program 2001 - '03

DARPA-TACOM ARDEC SBIR Phase II

- Change from sniping to countering high jinking rate sea-skimming missiles
- Change from 0.50 caliber to 40mm
- Change from ~2g's of maneuver authority to many tens of g's
- Entire FCS passed 41,000g shock table testing

Shipborne Countermeasure Range-Extended Adaptive Munition

(SCREAM) Program 2001 - '03

DARPA-TACOM ARDEC SBIR Phase II

SCREAM Actuator Challenges:

- Long actuator bay length
- Difficulty pushing beyond 50,000g's
- Low deflection -- ~ok for sniper, not ok for SCREAM

Hmmm...

Other Adaptive FCS Efforts

Rabinovitch & Vinson 2000 - present

again... low authority can't survive balloting, setback unsteady aero...

Now Where???

Guiding Hard-Launched Rounds... The Ephphany!

Discoveries from Europe... 2003 - 2004

PBP Actuators: The FCS Solution

- Fraction of the weight, size & power consumption of US Actuators
 (i.e. much smaller actuator bays)
- 300+% deflection increases with full force/moment capabilities
- Higher bandwidth
- Lower g-sensitivity
- Lower cost

Background/History

Worldwide patent application: 18 Jan. 2005

PBP Actuators: Actuator Layout

All information from public sources

Unclassified

17 May 2010

R. M. Barrett

PBP Actuators: Assemblies

Assembled Hard-Launch Capable Actuator FCS Units:

PBP Actuators: Fastest around...

Best performance in the adaptive structures industry:

• 1kHz equivalent bandwidth • Driving 0.40/.50 cal Mach 4.5 canards

All information from public sources

Unclassified

PBP Actuators: Real Performance!

Mach 3 Testing – FCS works well!

PBP Actuators: Munitions Comparisons

Smaller, Lighter, Cheaper - the Name of the Game

	Conventional Electromagnetic FCS	Adaptive/PBP FCS
Volume	14cc	5.1cc
Mass	69g	4.2g
Peak Power	148W	2.6W
Deadband/Slop	±0.38°	±0.002°
Bandwidth	22 Hz	189Hz
Acquisition Cost (100,000 shipsets)	\$187 ea.	\$12.30

PBP Actuators: Moving up in caliber to fuses – Easy!

Mortar Fuses

Howitzer Fuses

PBP Actuators: Moving up in caliber –

Equipment FCS Designs

Designs to drive both blade and grid-fin control surfaces full pitch, roll & yaw from apogee for ~8cc volume, through 100 Hz, <1W

PBP Actuators: The Next Challenge

Bring 0.50 Cal. Sniper Performance to a Weapon with an M-16 Form

- M-16 form factor
- Tight Dispersion @ meaningful ranges
- Impervious to 99% atmospherics
- Flat trajectory

Industrial & Government Partners

Adaptive Materials and Aerostructures for Missiles, Munitions and UAVs

Short Course for: Program Managers & **Practicing Engineers**

Open/Unrestricted Course

(all materials from public documents, can be taught worldwide)

- 2 14 hrs, on site, up to 2 days
- 1. Nomenclature
- 2. History of the Field
- 3. Adaptive Material Properties and **Modeling Techniques**
- 4. Flectrical Interface and Control
- 5. Aircraft Applications and Programs
- 6. Missile & Munitions Fundamentals & Programs thru early 2000's
- 7. Helicopter & UAV
- 8. Limitations
- 9. Future Directions

ITAR/EAR Restricted Course

(materials from restricted sources, proof of US citizenship req'd) 2 - 21 hrs, on site, up to 3 days

- 1. Nomenclature
- 2. History of the Field
- 3. Adaptive Material Properties and Modeling **Techniques**
- 4. Flectrical Interface and Control
- 5. Aircraft Applications and Programs
- 6. Missile & Munitions Fundamentals & Programs thru today w/advanced weapons concepts
- 7. Helicopter & UAV
- 8. Limitations
- 9. Future Directions

Questions?

