dssp

Electric Solid Propellants

Safe

Wayne Sawka, Ph.D. President

Digital Solid State Propulsion, LLC Reno, NV

Small Satellite Conference Utah State University Logan, UT Aug. 13-16, 2007

Navy Opportunity Forum Washington, DC June 2009

Energetics Safety & Performance Essential to Navy Programs

- Energetics continue to be dangerous to manufacture, transport and use
- Few weapons able to meet current Mil Stds for shipboard safety
- Controllable solid rocket motors are complex, heavy and expensive

Accidents are still occurring*

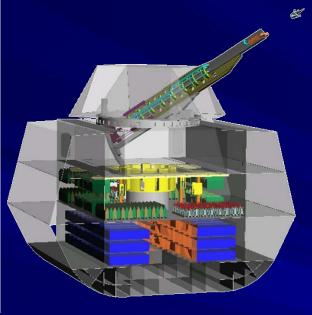
Jalalabad, Afghanistan, 10 Aug 02 26 killed, 90 injured Spin Boldak, Afghanistan, 28 Jun 02 32 killed, 70 injured USS Nimitz, 26 May 81 14 killed, 48 injured. \$79M in losses: Sparrow Missile

1960sUSS Oriskany, USS Enterprise206 killed, over 600 injured and
\$321M in losses

* More recent incidents information is restricted

5" Rocket Propelled Projectiles: Longer Range but More Hazardous

RED is a N	IO PASS	Â	
MIL-STD-2105C Tests		BTERM	
Slow Cook-Off	Rocket Motor	Rocket Motor	Pass
*Fast Cook-Off	Rocket Motor	Rocket Motor	Rocket Motor
*Bullet Impact	Rocket Motor	Rocket Motor	Rocket Motor
Fragment Impact	Warhead & Rocket Motor	Warhead & Rocket Motor	Warhead & Rocket Motor
Shape Charge	Warhead & Rocket Motor	Warhead & Rocket Motor	Warhead
Sympathetic Detonation	Warhead & Rocket Motor	Warhead & Rocket Motor	Pass
* videos			


Baseline Technologies Some 50 years old.....

- Solid propellants contain sensitive ingredients like nitroglycerin and perchlorates
- Liquid rocket motors are not easily stored and use toxic materials such a hydrazine
 - Not acceptable on Navy ships
- Controllable solid rocket motors
 - Very low mass fractions
 - Mechanically complex
 - Very expensive

Customer Need

New long range projectiles will require exo-atmospheric adjustments/targeting
Can only be done with thrusters
Must withstand *extreme* G-loading
Low cost is essential

Missile systems need longer ranges and flexible multi-mission roles

ACS and DACS need longer operation times and higher mass fractions

Nano-satellites need a viable propulsion option

Our Solution: A New Class of Energetic Material

"ELECTRIC SOLID PROPELLANTS" World's first "Smart" energetic materials Safe, CANNOT be ignited by spark/flame **CAN BE electrically switched off/throttled** with NO moving parts Manufacturing/Shipping is safer & easier - No high shear mixing Non-toxic exhaust & environmentally safe to manufacture

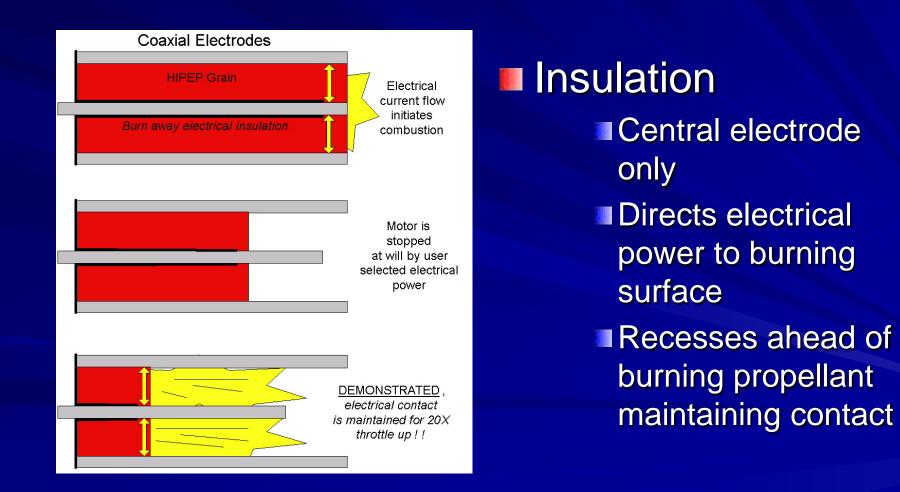
First-of-Its-Kind: "Smart Energetic Material"

Safe, Nontoxic Byproducts-Green Technology

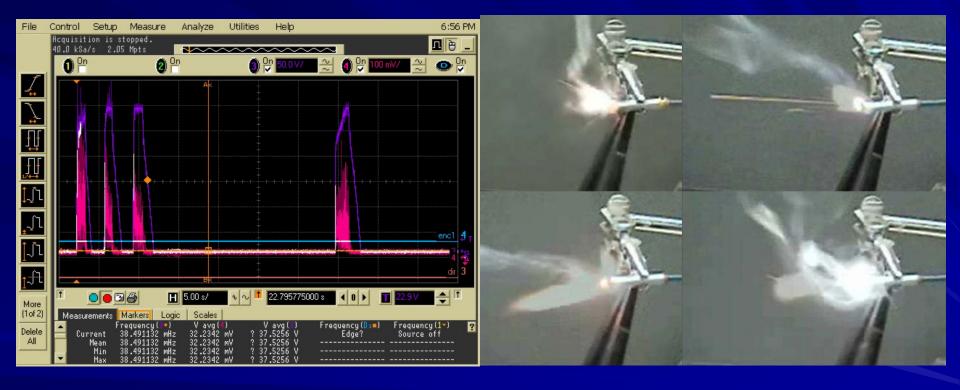
Electronics Manufacturing with Energetics

Safer to Manufacture and Use

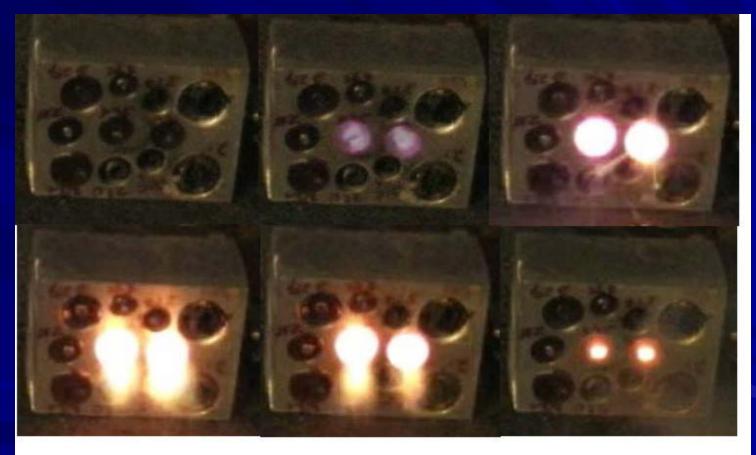
ESP Functions



	Low Power	Throttle 6-20x
	1	Proportional to electrical power supplied
111		Extinguishment
		User selected pulse widths/on-off cycles
		No Moving Parts
ligh Power	NA-	Low part count
States of the second se		


Н

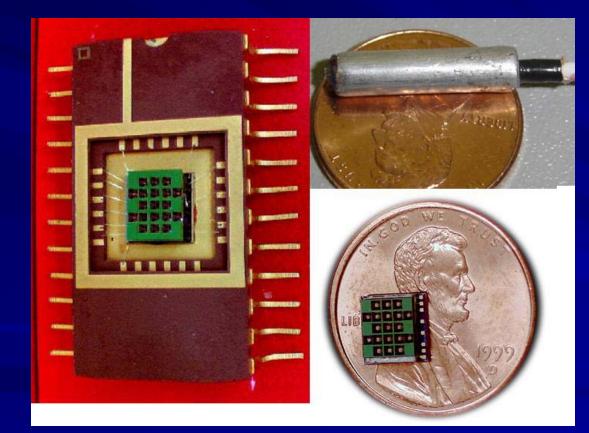
ESP Coaxial Grain Burn Away Insulation


Electric Solid Propellant Provides Discrete Pulse Widths

(KXY/

Clusters Balance Electrically and Ignite Simultaneously

Electric Solid Propellants are Safer To Use and Can Be Controlled


Cannot easily be ignited with spark or flame

Insensitive to high velocity tracer bullet impact

Solid state on-off-on electric control

DSSP Coaxial ESP Better, Faster, Cheaper than a DARPA Chip Thruster

Higher mass fraction
Lower part count
Variable thrust
Fewer wires
Lower powder

Why Are Electric Solid Propellants So Much Better?

Feature	<u>Advantages</u>	Benefits
Propellant Controllability	Many applications Even explosives	Lower cost Better smart weapon systems
Green Safe Propellant Class 1.4S (pending)	Fewer accidents and less hazmat handling disposal	Lower cost: manufacturing, transportation, and storage
High Performance* * ITAR Restricted	About the same current solid propellants	Higher mass fractions for longer missions

Current State of Development

DOD Development Programs

- Navy: Miniaturized ACS for Exo-atmospheric Projectiles
 - IM Testing being accelerated via CRADA w/ NAVAIR China Lake
- MDA: Mil Std. 1901A Compliant Ignition Systems
- MDA: Igniterless Rocket Motors
- MDA: Advanced DACS

Commercial Development

- Oil Service: "2009 Top Ten Inventions" by Oil and Gas Innovation
- 7 Patents and Counting....

Further Applications

Multi-fire igniters for solid and liquid rockets

Advanced gun propellants

 Dial in range: non-lethal to lethal

True variable yield explosives

Further Information On ESPs

JANNAF Conference Papers in:

- 2005 Monterey, CA
- 2007 Denver, CO
- 2009 Las Vegas, NV
 - Distribution C

Small Satellite Conference 2007

- Logan, UT
 - Distribution A
- Acknowledgements
 - MDA and Navy SBIR Programs
 - ONR, Fires Program