

Detachment Fallbrook

Pyrotechnic Shock Loading of the M82 Percussion Primer in the M777 Light Weight Howitzer Magazine Assembly Presented to the

NDIA Joint Armaments Conference May 2010

- Dr. Ryan Olsen, T&E Board Chairman, NSWC Crane, Detachment Fallbrook, ESED
- Kathryn Hunt, Chemical Engineer, USMC MARCORSYSCOM, PM Ammo
- Mr. Victor Hugo, Mechanical Engineer, NSWC Crane, Detachment Fallbrook, ESED
- Mr. Jon Conner, Senior Scientist, National Technical Systems, Dana Point, CA
- Mr. Caleb Bell, Program Manager, National Technical Systems, Camden, AR

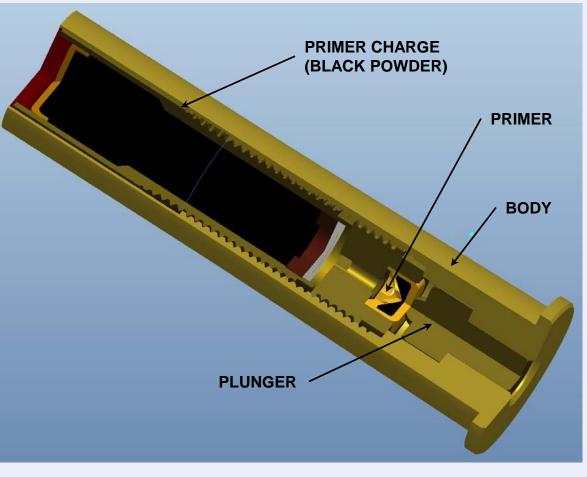
Detachment Fallbrook

<u>Pyrotechnic Shock Loading of the M82 Percussion Primer in</u> <u>the M777 Light Weight Howitzer Magazine Assembly</u>

- Background
 - M82 Percussion Primer Description and Design
 - M777 Primer Feed Mechanism
 - Premature Primer Functioning Observations
 - Test Design and Objective
- Evaluation of Operational Loading of M777 Magazine Assembly
 - Instrumentation Description
 - Field Test Firing Schedule
 - Data Reduction/Signals Analysis
- Simulation of Operational Loading with Laboratory Shock Tests
 - Baseline Sensitivity Test
 - Pyrotechnic Shock
 - Sine Burst
 - Drop Shock
- FEA and Test Results
- Summary and Conclusions

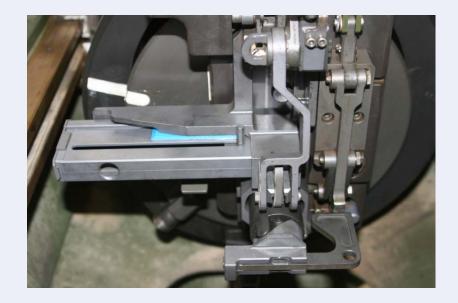
M82 Percussion Primer Description

- US Army and Marine Corps standard primer for the initiation of all 155mm Howitzers
- During functioning, black powder output ignites propelling charge
- On earlier Howitzers the primer was hand loaded into breach
- New Howitzer designs incorporate a mechanical loading assembly



Detachment Fallbrook

M82 Percussion Primer Design


A CONTRACTOR DURING

NSWC Crane Division

Detachment Fallbrook

M777 Howitzer Primer Feed Mechanism Description

PRIMER MAGAZINE AND TRAY ASSEMBLY

PRIMER FEED AT BREACH ASSEMBLY

Premature Primer Functioning

- During initial weapon testing, multiple primers functioned in the magazine during firing
- Field malfunctions associated with functioning of primers during chambering
- Primer is subjected to extreme forces associated to M777 firing
- Primer not designed to withstand these types of forces

Detachment Fallbrook

Test Design and Objective

Understand the impact of M777 firing on the M82 primer

- Measure forces associated with M777 firing
- Simulate these forces
- Condition M82 Primers to simulated forces
- Verify their functional performance and sensitivity

NSWC Crane Division

Detachment Fallbrook

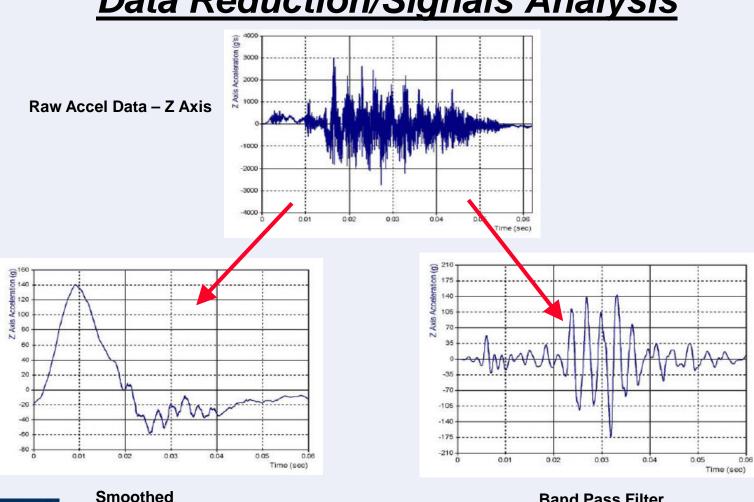
Instrumentation Description

- 3 Each Endevco 2225M5A Piezoelectric Accelerometers (100,000 g's)
- Installed on Tri-axial Mounting Block
- Mounting Block Bolted to Top of Primer Magazine Assembly
- Cables Tied Down and Routed to Side of Gun System
- Endevco 133 Charge Amplifier
- LDS Genesis Digital Data Recorder
 - 125 kHz Sampling Rate

Detachment Fallbrook

Field Test Firing Schedule

Round Numbers	Projectile	Fuze	Propelling Charge
1-4	M795 HE	M739A1	MACS at Increment 5
5-8	M795 HE	M739A1	M203A1
9-12	M107 HE	M739A1	M4A2 White Bag - Charge 7

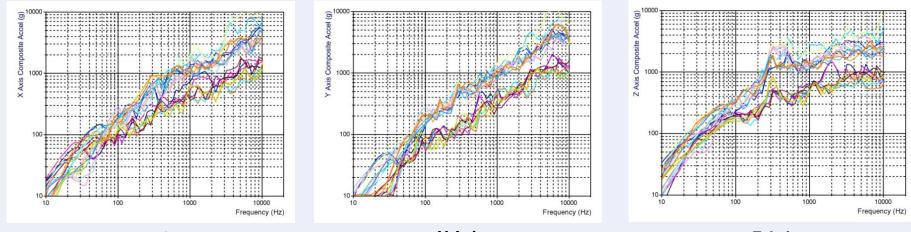


Detachment Fallbrook

Data Reduction/Signals Analysis

05/04/10

Band Pass Filter



Detachment Fallbrook

Composite Acceleration Shock Response Spectra

X Axis

05/04/10

Y Axis

Z Axis

Detachment Fallbrook

Data Reduction/Signals Analysis Summary

- Forces compromised of 3 distinct phenomena
 - Shock associated with propellant combustion
 - Harmonics associated with projectile travelling down barrel
 - Recoil force

Detachment Fallbrook

Data Reduction/Signals Analysis - Conclusions

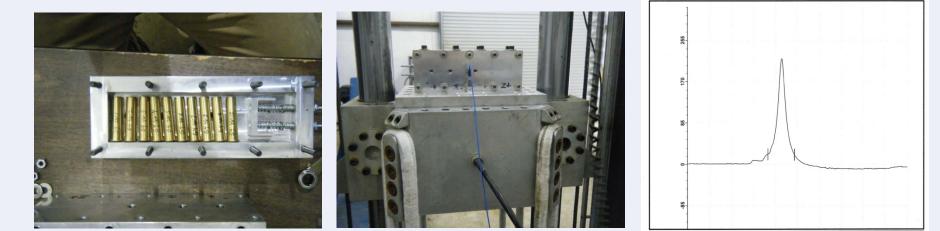
- Laboratory simulation requires three techniques
 - Pyrotechnic Shock
 - Simultaneous in all 3 axes
 - Based on Composite SRS
 - Electro-Dynamic Shaker
 - 250 Hz, 200 g Sine Burst in Z axis
 - Drop Test
 - 200 g, 10 msec Half Sine Pulse in Z axis

Detachment Fallbrook

Simulation of Operational Loads – Test Methodology

- Sensitivity Testing
 - Establish Baseline M82 Percussion Primer Lot Sensitivity
 - Evaluate Impact of Sequential Shock Testing on Sensitivity
- Shock Testing w/Test Fixtures to Replicate Tactical Magazine Interfaces
 - 100 Primers Total
 - Replica Magazine Test Fixture Holds 10 Primers
 - 9 Shock Replications Applied to Each Group Sequentially
 - Drop Shock

- Pyrotechnic Shock Tests
- Sine Burst Tests



NSWC Crane Division

Detachment Fallbrook

Drop Shock Testing

M82 Primers in Magazine Fixture

Drop Shock Test Setup

Accel Data – Z Axis

1st Int

378.30 Tn/s

Ch. Time

● 1 9.92 mS

Curr Am

19 44 019

Peak Amp

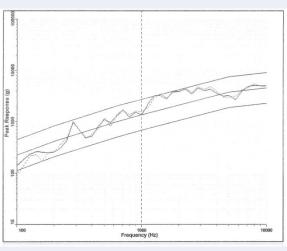
217 68 at

Time/Div


NSWC Crane Division

Detachment Fallbrook


Pyrotechnic Shock Testing


Magazine Fixture w/Accels

Magazine Fixture Mounted to Resonating Plate

Det Cord Patters for Pyroshock

Example +/- SRS Response Curve

NSWC Crane Division

Detachment Fallbrook

Pyrotechnic Shock Testing Premature Function of M82 Primer

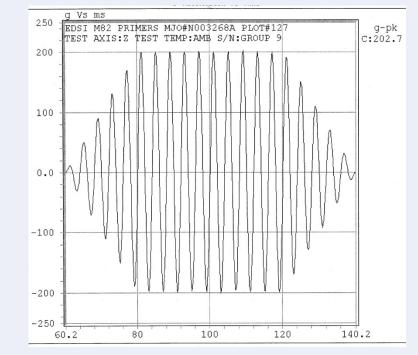
Group 5 Pre-Test

Group 5 SN 1 Premature Function (overstress of force)

NSWC Crane Division

Detachment Fallbrook

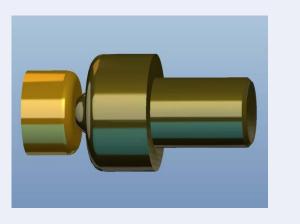
Sine Burst Shock Testing

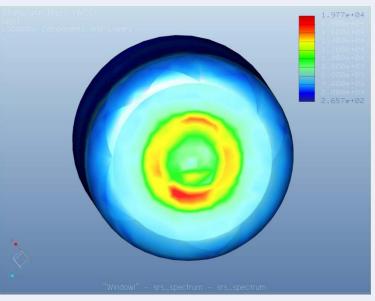


Group 10 Pre-Test

ectro-Dynamic Shaker Test Setup

Example Response Accel Output





Detachment Fallbrook

Dynamic FEA Analysis Results

Plunger/Primer Only Model: Primer Cup Material Yield Strength Approx 17 ksi

Dynamic Shock Load	Max Von Mises Stress in Primer Cup (ksi)
Z Axis Pyroshock SRS	19.8
Z Axis Drop Shock	0.136
Z Axis Sine Burst	0.235

Detachment Fallbrook

Summary and Conclusions

- Operational Loading of M82 Percussion Primers During M777 Firings Evaluated for Various Maximum Charge Configurations
 - Loading consists of three aspects: pyrotechnic shock, 250 Hz harmonic burst, and recoil shock
- Pyrotechnic Shock Loading is Most Severe Aspect of Operational Loads Based on Lab Tests and Dynamic FEA Analysis
 - Overstress induced premature function of primers
- Sensitivity testing of conditioned primers in progress

