Automated Projectile Design Software

Mark Steinhoff Arrow Tech Associates

Projectile Design

- Ballistic Projectile Design
 - Performance Specs
 - System Interface
 - Candidate Design
 - Mass Properties
 - Aerodynamics
 - Ballistic Effectiveness
 - Payload Effectiveness

Projectile Design

- Ballistic Projectile Design
 - Performance Specs
 - System Interface
 - Candidate Design
 - Mass Properties
 - Aerodynamics
 - Ballistic Effectiveness
 - Payload Effectiveness
 - ► ARROW TECH →

- Guided Projectiles
 - Same as ballistic
 plus
 - Control mechanisms
 - Sensors
 - Autopilot
 - Guidance strategy

Mission

- Ballistic Mission
 - How often will you hit the target (P_h)
 - When you hit it, what is the likelihood of a kill (P_{k/h})

Mission

- Ballistic Mission
 - How often will you hit the target (P_h)
 - When you hit it, what is the likelihood of a kill (P_{k/h})

- Guided
 - Same as Ballistic, plus
 - Remove system errors
 - Trajectory shaping
 - Glide for extended range
 - Dive to clear obstacles or for lethality

Bottom Line

- You now have to:
 - Design the projectile
 - Decide on a control mechanism
 - Design the auto pilot
 - Implement a Guidance strategy

Commercial/Military Projectile Design Tools

- Custom/Proprietary Software
 - Developer uses different analysis modules handing off data from one to the other
 - Stand alone modelers
 - Model building (PRO-E or Solid Works)
 - Aerodynamic estimation (CFD, Missile DATCOM, MILS3 or AP)
 - Simulation codes
 - Hand coded custom solutions
 - Typically Project A evolves into Project B evolves into Project C
- PRODAS
 - Legacy codes embedded into an integrated software system
 - Validated simulations
 - Macro language
- MATLAB/Simulink
 - Like Legacy Simulation codes except within an environment
 - Pre-built simulation blocks and integration engines

Software Metrics

Smart Weapon Development Levels

- First Level Conceptual Design Studies (Proposal)
 - For a Given Projectile, What Improvements in Performance Can be Obtained IF a Control Force and/or Moment is Available?
 - Simple to model and assess the Benefit of a Flight Control System
- Second Level Detailed Design Studies (Design)
 - Perform Parametric Trade Studies to design the details of the Control Mechanism
 - Assess the Performance of a Smart Weapon
- Third Level Final Detailed Design (Test)
 - At this Stage, Detailed Models of the Sensor Suite and Control Law are Included in Analysis
 - Models will include real time loop rates
 - Model should generate C code for embedded processors

Example #1 Ballistic Projectile

- Design a 50 caliber projectile that will minimize wind sensitivity at 1000m
 - Start with basic shape
 - Vary boat tail length and Ogive length and shape

Subtle Changes to Ogive Shape

Not So Subtle Changes to Ogive Length

Not So Subtle Changes to Boat Tail

Analysis Map

Example #1 Metrics

- 27 designs evaluated
- 7 analysis modules executed
- 50 seconds run time
- 200 lines of PRODAS macro code
- 4 hours to develop
- 1 Excel file of results
- Results:
 - Decreased wind sensitivity by 7.6%
 - Some configurations increased by as much as 10%

Example #1 Extended Metrics

- Started with previous macro
- 125 designs evaluated
- 7 analysis modules executed
- 4 minutes run time
- 212 lines of PRODAS macro code
- 2 minutes to modify
- 1 Excel file of results
- Results:
 - Decreased wind sensitivity by 7.8%
 - Some configurations increased by as much as 25%

Example #2 Guided Projectile

- Basic design of mortar body is fixed, evaluate different fin/canard designs to meet multiple requirements.
 - Find maximum ballistic range
 - Find maximum gliding range using open loop control
 - Find maximum target range with vertical impact using open loop control

Analysis Map

Macro Map

Guided Flight Macros

- Simple open loop canard controller embedded in the GN&C Prototype tool
- Maximum Gliding Range Macro
 - Macro to iterate these design variables:
 - Quadrant elevation
 - Time Glide on
 - Canard application level to limit total AOA
- Maximum Range with Vertical Impact
 - Macro to iterate these design variables:
 - Quadrant elevation
 - Time Glide on
 - Time Dive on
 - Canard application level to limit total AOA

Example #2 Results

- About half of the configurations unstable
- 40% met the ballistic requirement
- 15% met the extended range
- 8% met all the requirements

Iterated this analysis with three different air frames

Conclusions

- Thorough ballistic development is tough
 - Automation lessens the burden
 - Guided projectiles are even worse
- Match the tool to the job
 - Where are you in the development cycle?
 - Fast or Detailed?
 - Do you have to validate the sims?
- Tools are readily available

