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RDECOM ) Introduction

 The size reduction in the Fluid Energy Mill is achieved by
Intensive particulate collisions inside the gas-solid two-phase
flow.

« This study focuses on the two-phase flow inside the FEM.

 The three-dimensional particulate motions and collisions
Inside a FEM were simulated by coupling the Discrete
Element Method (DEM) and Computational Fluid Dynamics
(CFD), where particle-particle interactions were taken into
consideration.
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mﬂ:@ EXperiment Setup

Grind Air Inlet

Feed Funnel

Feed Air Nozzle

Venturi

Grind Air Inlet
Milling Chamber

The cross-section view of the Sturtevant Qualification FEM.

KCI Steel

Poisson's Ratio 0.5 0.31
Shear Modulus (Pa) 6.24E+09 7.30E+10

Density (kg/m3) 1990 7750

Material properties for the DEM-CFD coupling simulations
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R"Ec@ Theoretical Model

e Gas Phase (CFD)

— FLUENT (Ansys Inc. Canonsburg, PA), a widely used
commercial Computational Fluid Dynamics (CFD) software.

— The Reynolds Averaged Navier-Stokes equations.
— The K - € turbulent model.

e Solid Phase (DEM)

— Discrete Element Method (DEM).

— EDEM (DEM Solutions (USA) Inc., Lebanon, New Hampshire).
« DEM-CFD Coupling

— Including the transfer of the momentum but excluding the heat
transfer.

— Employing the Lagrangian model due to the computation load
and the low particulate volume fraction.
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BDEG@ Simulation Setup

e Single-phase gas flow was simulated under five different
operating conditions, as listed in the following Table.

Case | Grind Air Pressure (kPa) | Feed Air Pressure (kPa)
1 137.8 137.8
2 206.8 206.8
3 275.8 275.8
4 344.7 344.7
5 413.7 413.7

Five different operating conditions investigated in this study
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RDECOM ) Simulation Setup

 Three air inlet nozzles were not considered in the
coupling simulation and only the main chamber was
Investigated.

Grinding
A Ll Air Inl
The cubic box at the entrance of ﬂ
the feed air is a virtual geometry
used to generate particles with

the mean particle size of 420 pym. Air
Outlet

4. y

LX Grinding " e—[Feed Air

Air Inlet Inlet

Geometry of the grinding chamber for two-phase
simulation.
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B"m) Simulation Results

e Particle Generation

— 1,000 spherical KCI particles were generated at a rate of 10,000
per second.

— The KCI particles were set to have a mean particle size of
420 ym and follow a normal distribution.
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Size distributions of the particles used in the five cases.
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Simulation Results

Particle Motions
~ The particles were driven to the peripheral wall.
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Particle flow pattern after the particle Inside view of the grinding process at steady
generation under the condition of state.
Case 2.
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Lok ) Simulation Results

— The grinding chamber was evenly divided into five zones along Z
direction.

— Zone 3 has the maximum average particle velocity, independent
of the operation pressure.
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Average particle velocity magnitude in each zone under
Five zones along the Z direction. different cases. (“Average” means average in both
number and time. And time average is taken from 0.2s to
0.45s.)
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Simulation Results

Particle Collisions

Zone 3 has the largest collision frequencies.
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Average collision frequency between the particle and wall and average collision frequency between the particles (“Average” is

the time average from 0.2s to 0.45s.).
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Lok ) Simulation Results

— The ratio of the normal to the tangential component of the
relative velocity of particle-particle collisions is about 1:8.3.

— The collisions between the particles can be considered in the
majority as “sideswipe collisions”.
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Comparison of the normal and tangential components of the Scatter plot of the normal relative velocities vs. the
average collision speed for particle-particle collision. tangential relative velocities of the collisions between the

particles in the Case 2.
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Lok ) Simulation Results

— The particle-wall collisions occur most intensively and frequently
at the positions opposite to the two grinding nozzles (marked
with circles in Figure).
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3-D illustration of the particle-wall collisions in the Case 2. (Duration:; 0.001s, from 0.44s to
0.441s).
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) Simulation Results

e The Effect of the Number of the Particles

— 7000 particles were used in the simulation under the operating
condition of the Case 1, which is referred as Case 6.

— The average particle velocity in Case 6 is about one half of that

In Case 1.
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ek ) Simulation Results

— The collision frequencies increase significantly for Case 6.

— The patrticle-particle collision frequency increases faster with the
number of the particles than the particle-wall collision.

— The ratio of particle-particle collision to particle-wall collision is
1:3 and 1:8, respectively, for case 6 and case 1.
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Comparison of average collision frequency between Case 1 and Case 6. (“Average” is the time average from
0.2st0 0.45s.)

WARFIGHTER FOCUSED.



Bﬂl:'[.‘ll@

Simulation Results

e Streamlines of the Particle Motions
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TL Comparison of the particle motions with grinding
air and without grinding air

(in (@) and (b), only FP=344.7kPa; in (c) and (d),
FP=GP=344.7kPa.).
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) Conclusion

» The particles are driven to the peripheral wall forming a circulating particle layer.

 Those particles located near the grinding air nozzles are accelerated to higher
velocities by two grinding air streams compared to other particles. Those high-speed
particles are more likely to hit the wall, or collide with other particles due to the
velocity difference.

« The distribution of the particle velocities becomes broader with the increasing of the
operating pressures, leading to a higher probability of the establishment of the
relative velocities and higher relative velocities to some extent.

« Both the particle-particle collisions and the particle-wall collisions play an important
role in the particle size reduction.

« Particle-particle collisions can be considered to be “sideswipe collisions” in majority,
and mainly lead to particulate abrasion, instead of cleavage or fracture.

« The feed air stream is not as efficient and effective as the grinding air stream in terms
of facilitating particle breakage.
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