NDIA's 54th Annual Fuze Conference NAVY OVERVIEW

John Hendershot

john.hendershot@navy.mil

301-744-1934

For Dr. Robert Gates

Technical Director, NAVSEA Indian Head Division

NEE IPT Lead

Outline

- Naval Energetics Enterprise Overview
- Fuze Safety Review Process & Panel
- Navy Fuze Acquisition
- Navy Fuze Work Highlights
- Summary

Navy Energetics Enterprise Vision

One Team

Dedicated to providing ordnance solutions to the Warfighters

NAVAIR China Lake & Point Mugu NAVSEA Indian Head, Dahlgren & Crane

NEE Organization

NEE Goals

- Provide stewardship of unique Navy capabilities to ensure current and future Navy warfighting requirements are attainable and supportable
- Speak with a coordinated Navy voice
- Work together to improve efficiency and rationalize resources to provide responsive, safe and affordable ordnance solutions

Navy Fuze Safety Review Process

Weapon System Explosives Safety Review Board – WSESRB

Fuze Initiator System
Technical Review Panel
FISTRP

Army Fuze Safety Review Board

AF Non Nuclear Weapons Safety Board

Fuze and Initiation Systems Technical Review Panel (FISTRP)

Panel Chair – Gabriel Soto Panel Members –

Raymond Ash
Randy Cope
John Hendershot
John Kandell
Scott Pomeroy
Melissa Milani

Ralph Balestieri
Micheal Demmick
John Hughes
David Libbon
Tinya Coles-Cieply

Brian Will Bradley Hanna George Hennings Eugene Marquis

Current Topics of Interest/Challenge

1978 Joint Fuze Management Board Policy on Safe Separation Analysis Emerging FESWG Guidance on Charge-Based Memory

MIL-STD-1316 STANAG 4187 MIL-STD-1901 STANAG 4368 MIL-STD-1911 STANAG 4497

Navy Fuze Acquisition

FMU-164

- Requirements
 - Improved reliability 97% @ 90% confidence
 - Backward compatible to FMU-139 interfaces
 - Hard target penetration
 - FMU-143 specification
 - New arming & function delay times
 - Serial data interface programmability
- Schedule
 - RFP released on 22 December 2009
 - Source selection starting April 2010
 - Contract award scheduled 4th Qtr 2010
 - IOC scheduled in 2017

5"/54 Gun Fuzes

- MK 432 Electronic Time (ET)
 - First production 2002
 - ET only, no PD backup
 - KE-ET & HE-ET

- Design Initiated 2002
- ET, PD, PD Delay & HOB
- Lacks AAW capability
- Land Attack & ASuW

- Design Initiated 1995
- USN Unique Fuze
- ET, HOB, PD, AIR Prox, AUTO
- Selectable HOB
- Rain Reliability
- Sea Clutter Filter AIR
- Land Attack, ASuW, & AAW

Electronic Time (ET

Point Detonating (PD)

Surface Proximity (HOB)

Air Proximity (AIR)

Autonomous (AUTO)

ACTIVE/FUTURE

5"/54 Gun Fuze Roadmap

MK437 Mod 0: Multi-Option Fuze Navy

Navy Guided Projectiles

- 155mm Long Range Land Attack Projectile (LRLAP)
 - Gun-launched, rocket-assisted guided projectile
 - Currently in EMD phase as part of the Advanced Gun System on DDG-1000 Class destroyers
 - Qualification and guided flight testing underway, completion scheduled in 2012
 - LRIP to begin in FY13
 - Range > 63nmi
 - Electronic S&A and electro-mechanical ISD

- - Joint Fires AOA study pending

Additional Navy Gun Ammunition

- 57mm/L70 MK 295 Mod 0 High Explosive 3P Cartridge (HE-3P)
 - Pre-fragmented explosive projectile with programmable, proximity fuze
 - 6 Fuze Modes:
 - Time Gated Proximity (TGP), Time Gated Prox with Impact Priority (TGIP), Point Detonating (PD), Point Detonating Delay (PD/D), Electronic Time (ET), Proximity with Self Destruct

- 30mm X 173 MK266 Mod 1 High Explosive Incendiary Traced (HEI-T)
 - Super Quick FMU-151 Fuzed PBXN-5 projectile
 - High Order Blast/Fragmentation w/ Incendiary Effects

Navy Fuze Work Highlights

- NAVAIR: Impact Switch Investigation
- NAVAIR: Dynamic Impact Simulation of "High G Hardened Fuzes"
- Joint JFTP / NAVSEA PMS495: MEMS Fuzing for High Reliability Systems
- Joint NAVSEA PMS495 / ONR: Versatile Explosive Train Integrated into a MEMS S&A Device
- ONR: MEMS Fuze for Marine Corp Flight Control Mortar
- JIMTP: Extremely Insensitive Detonating Substance (EIDS) Initiation System
- JFTP: MEMS Retard & Impact Sensors

Impact Switch Investigation

- Investigation objective is to characterize switch vibration response
- FY09 start schedule for FY10 completion
- Switch becoming more sensitive to vibration as exposure is accumulated
- Switch characterization conducted using flight test vibration levels
- Reporting on preliminary results

Open Session VA Briefing provided by Mr. Sam Tuey

Dynamic Impact Simulation of "High G Hardened Fuzes"

- Evaluation of latest LS-DYNA Impact
 Simulation Software

 FEB 19
 Time = 0,0023999
 Corbustro of Efficient Plastic Chris
 mixr/0,999, et elemit 810523
- Creating LS-DYNA input templates for hard target penetration application
- Impact deceleration, stress & strain calculated for penetrator Fuzes
- Results compared to NAVAIR cannon and sled test data

Open Session IIIA Briefing provided by Dr. Paul Glance

MEMS Fuzing for High Reliability Systems

 Development of G-hardened miniature Fuze component technology mine defeat penetrator application

- Silicon on Insulator (SOI) MEMS S&A
- Micro detonator
- MEMS initiator
- Low-cost miniature fire-set

A Versatile Explosive Train Integrated into a MEMS S&A Device

- Development of integrated initiation and explosive train component technology for MEMS based S&A application
- Pellet 45
- Developed for small volume applications turning tight corners

Employs CI-20 based explosives RSI-007 &

Vaporization of an IHDIV MEMS initiator

- S&A for 81 mm Precision Urban Mortar Attack
 (PUMA) Future Naval Capability (FNC)
 - Joint Navy / Army S&T system development
 - Supports Marine Corps Conventional Weapons (CW) Science & Technology Objectives
 - System demonstration in FY14
- MEMS based S&A

Extremely Insensitive Detonating Substance (EIDS) Initiation System

- An Initiation System that emulates large diameter boosters for use in initiating EIDS materials
- OSD funded through Joint Insensitive Munition Technology Program
- Joint Navy (NEE) led effort with Air Force, Army, & Los Alamos participation
- Improved IM performance through elimination of large, relatively sensitive booster
- System requires simultaneous initiation of multiple detonation points

MEMS Retard & Impact Sensors

- Objective: Obtain DoD retard and impact sensors with precision, reliability, producibility and cost effectiveness by exploiting existing MEMS microfabrication and packaging technologies
- Traditional coil spring-mass technology:

- Wide performance variability per mechanical spring tolerances
- Difficult to precisely sense low G's with "macro world" springs
- MEMS technology appears well-suited for making improved low-G sensors per DoD exploratory work to date:
 - NAWCWD: precision-electroplated G-sensors
 - NSWCIH: silicon G-sensors and packaging
 - ARDEC: metal G-sensors and packaging

 FY10 Focus: low-G impact sensors (<100G) & very low-G retard sensors (<5G)

Illustration and Photographs Courtesy of ARDEC

Closed Session IVA Briefing provided by Mr. Walt Maurer

Summary

Today's Navy

- NEE Leveraging the abilities of multiple installations
- FISTRP / FESWG / Joint Reviews Safety conscious
- Cradle to grave support of the warfighter
 - Concept
 - Advanced Development
 - Research and Development
 - In-Service Support
 - Quality Assurance

