

Adaptive Imaging and **Guided Fuse Technologies**

Professor Ron Barrett

Director of the Adaptive Aerostructures Laboratory (AAL) **Aerospace Engineering Department** The University of Kansas, Lawrence, Kansas USA

> AAL ...Backroom for the Innovation-Driven Aerospace Organizations of the world...

> > 5th Annual NDIA Fuze Conference Kansas City, Missouri 12 May 2010

Purpose:

Describe to the fuze community the state of the art in adaptive optics and flight control technologies

Outline:

I. Background & Brief Introduction to Adaptive Materials

11. History of Programs

III. New Classes of Adaptive Actuators

IV. Current & Future Programs Enabled

Adaptive Materials

... A Paradigm Shift

Old Paradigm:

Structural deformations indicate that a given loading state is occurring and must therefore be accommodated.

AERODYNAMICS GROUP

New Paradigm:

Structural deformations can be controlled and can therefore be used to enhance mission effectiveness.

Adaptive Materials: A (Very) Brief Introduction

What are Adaptive Materials & Structures?

Controlled

Conventional

Adaptive

Intelligent

Sensory

Adaptive Aerostructures: A (Very) Brief Introduction

- Most Useful Classes of Adaptive Materials:
 - Shape-Memory Alloy -High Deflection, Slow, Lots of Power
 - Variable Rheology Materials -Good for clutching and changing stiffness
 - Piezoceramics -Very Fast, Low Power
 - Optically Adaptive Materials -Newest class, controllable color, luminosity, reflectivity, opacity

Adaptive Flutter Test Surfaces

- Solid State
- Order of magnitude less device weight
- Order of magnitude less installation weight
- Half the acquisition price of the conventional system
- · Half the installation price and downtime of the conventional system
- Exacting Phase Control
- Flight Rated to Mach 3
- Half the flutter insurance rates

US & International Patents pending

KU

Background

First 20 years of Programs with Lineage to Flying Adaptive UAVs

Overview of Programs with Lineage to Flying Adaptive UAVs

Brief Guided Round History

M712 Copperhead 1975

XM 982 Excalibur & ERGM

Guided Round History

Reducing the caliber...

M 247 Sergeant York 1977 - 1985

Background

Guided Round History

What's needed in a low caliber FCS actuator?

What is needed in such a flight control actuator???

- Setback tolerance: 5,000 200,000g's
- Balloting, setforward, ringing impervious
- Compatible with supersonic control effectors
- Not affected by atmospherics (rain, dust, dirt, snow, etc.)
- High feedback command fidelity maintained during all flight phases
- 20 yr storage life
- -40 to +145°F
- Lightweight (<1g), Low Volume (<1cc), Low Power (10's of mW)
- High bandwidth (>200 Hz)
- Production shipset costs in single dollars... at most

Adaptive Materials Actuation... Different

13

Position Feedback

motor

stages

linkages etc.

All information from public sources

12 May 2010 R. M. Barrett

US Army FOG-M FCS...

One possible solution... from the MAV world

The 1st Micro Aerial Vehicle (MAV) -- by the DoD CounterDrug Technology Office 1994 - '98

Enabled by Flexspar Piezoceramic Stabilators

Mission Profile:

Stabilator Characteristics:

- total mass 5.2g
- actuator mass: 380 mg
- max. static deflections: ±119
- max. static deficition: 14 mW
 max power consumption: 14 mW
- pitch corner frequency: 47 Hz
- first natural frequency in pitch: 23 Hz

Advanced UAVs:

Driving the need for Adaptive Actuators -faster, lighter, stronger

Adaptive Surfaces vs. Conventional Servos

- 96% reduction in power consumption
- 16x increase in bandwidth
- 99.2% decrease in slop
- 12% OWE savings
- 8% MGWTO savings

Background

Gravity Weapons

Interceptors

SMDC HITT Program 1997 - 2000

Hypersonic 5ms Response Pitch, Roll, Yaw control

Guiding Lower Caliber Rounds... More History

Barrel-Launched Adaptive Munition (BLAM) Program 1995 - '97

USAF/AFRI -MNAV

- Aerial Gunnery (20 105mm)
- **Extend Range**
- 2g maneuver

(Eglin AFB tests '97)

(Mach 3.3 tests '96-'97)

- Increase hit probability
- Increase probability of a kill given a hit
- Reduce total gun system weight fraction

Range-Extended Adaptive Munition (REAM) Program 1998 - '99 TACOM-ARDEC (Picatinny-APG) Phase I SBIR

New Actuator Classes

- Guide 50 cal sniper rounds against targets moving up to 100km/hr
- 10cm dispersion @2km under 99% winds, up to 10% grade

Background

Range-Extended Adaptive Munition (REAM) IRAD 1999 - 2001 BAT-Lutronix Corp. developed supersonic piezoelectric FCS actuators

Shipborne Countermeasure Range-Extended Adaptive Munition (SCREAM) Program 2001 - '03

DARPA-TACOM ARDEC SBIR Phase II

- Change from sniping to countering high jinking rate sea-skimming missiles
- Change from 0.50 caliber to 40mm
- Change from ~2g's of maneuver authority to many tens of g's
- Entire FCS passed 41,000g shock table testing

Shipborne Countermeasure Range-Extended Adaptive Munition

(SCREAM) Program 2001 - '03

DARPA-TACOM ARDEC SBIR Phase II

SCREAM Actuator Challenges:

- Long actuator bay length
- Difficulty pushing beyond 50,000g's
- Low deflection -- ~ok for sniper, not ok for SCREAM

Hmmm...

Other Adaptive FCS Efforts

Rabinovitch & Vinson 2000 - present

again... low authority can't survive balloting, setback unsteady aero...

Now Where???

Guiding Small Arms Rounds... The Ephphany!

Discoveries from Europe... 2003 - 2004

PBP Actuators: Real Performance!

Fraction of the weight, size & power consumption of US Actuators
 (i.e. much smaller actuator bays)

Worldwide patent application: 18 Jan. 2005

PBP Actuators: Real Performance!

All information from public sources

Unclassified

12 May 2010

PBP Actuators: Real Performance!

Assembled Hard-Launch Capable Actuator FCS Units:

PBP Actuators: Real Performance!

Assembled Hard-Launch Capable Actuator FCS Units:

All information from public sources

PBP Actuators: Fastest around...

Best performance in the adaptive structures industry:

• 1kHz equivalent bandwidth • Driving 0.40/.50 cal Mach 4.5 canards

All information from public sources

Unclassified

PBP Actuators: Real Performance!

Mach 3 Testing – FCS works well!

Background

PBP Actuators: Moving up in caliber –

New Actuator Classes

Howitzer Fuses

PBP Actuators: Moving up in caliber –

Fuse PBP FCS Designs

Designs to drive both blade and grid-fin control surfaces full pitch, roll & yaw from apogee for ~8cc volume, through 100 Hz, <1W

Families of Steered Piezoelectric Enhanced **Adaptive Rounds (SPEARs)**

Roll Stabilized Recon. SPEAR

Full Control Recon. SPEAR

inactive fins

active fins

Supersonic MAV mission tungsten nose

camera

rollsonde sensors

COT

technology

Tactical Benefits:

- Fastest way to get local reconnaissance images
- Totally impervious to weather/gusts
- ~ \$20/round

Roll Stabilized Recon. SPEAR

Necessity of Roll Stabilization

Smooth bore/obturating band launch 20mm:

Froll rate > 8rps

flare

12Ga

Full Battlefield Reconnaissance

tungsten nose camera

Friendly Fire reduction/elimination

40,000 ft (12km) 20mm (16mm) saboted SPEAR Mach 0.8, 15° launch

Micro Optics Steering w/piezo

±2° through 1kHz
fully proportional
sizable down to 20mm rounds
hardened through 10,000g's
solid state
20+yr life

Questions?

... and a few interesting facts about Kansas...

Hilly, wooded Lawrence, home of the University of Kansas 45 min. West of Kansas City

A very blue dot in a very red state: Lawrence ~ Kansas as Austin ~ Texas

