NDIA Fuze Conference Kansas City, Missouri May 11-13, 2010

TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.

John T. Geaney Advanced Fuzing Concepts Team Fuze & Precision Armaments Technology Directorate ARDEC

M759 Fuze

The M759 is a Point Detonating Dual Function Fuze

 Functional modes are impact and inertial

The M759 Fuze is used on the M789 High Explosive Dual Purpose cartridge

M789 Cartridge

- The M789 HEDP Cartridge is designed for use against light armor and anti-personnel targets
- The M789 is fired from the M230 Chain Gun on the Apache AH-64 helicopter

Spin-Compensated Shaped Charge Liner

Fragmenting Steel Body

Problem

- When fired at soft targets such as sand or soil, at long range, the M789 will penetrate the target medium to a depth that minimizes the blast and fragmentation effect.
- A Fuze Technology Integration (FTI) Project was initiated to increase the soft target sensitivity of the M759 fuze

RDECOM Insensitivity Investigation

- User reports do not indicate any change in performance when the M789 cartridge is fired at hard targets
- No indication that cartridges were not detonating after impact with soft targets
- In an effort to understand the response of the current M759 configuration, modeling and simulation analysis was conducted

Results of M&S analysis show the projectile burying into soft target materials.

Probe Investigation

- On impact with a hard target, a shoulder feature on the glass-filled nylon probe shears, allowing it to impact the firing pin
- In addition to shearing the shoulder, the probe must overcome an interference fit in the o-give before it can slide into the firing pin
- Analysis shows that the shoulder does not shear on soft target impacts.

Probe Investigation

 Efforts to optimize the probe, shoulder, and probe confinement cup did not yield a design that would survive the inertial loading during setback and shear on soft target impacts

- As an alternative to the probe shoulder feature, a spin clip solution was investigated
- The spin clip constrains the probe during setback and releases at the tactical spin environment
- A similar design approach is used in the M505A3 fuze
 - A spin clip provided anti-rotation to an unbalanced rotor

M505A3 Fuze Assembly

Rotor Assembly

RDECON

Rotor Detent Spring

M789 with Spin Clip

Modified Probe & Spin Clip

Spin Clip Design

- Baseline M759 model used to simulate spin clip performance
- Spin clip simulation illustrated increased sensitivity compared to baseline simulation on soft target impacts
- Long range (Low Speed) conditions were modeled in the simulation to illustrate the worst case sensitivity scenario

Spin Clip Configuration

Production Configuration

Spin Clip Testing

- Small lot of spin clips and modified probes manufactured at the Fuze Development Center, ARDEC
- Airgun tests and high speed spin tests conducted to verify results of modeling and simulation
- Results of bench testing provided confidence to build prototype fuzes

High Speed Spin Testing to 60,000 RPM Airgun Testing To 125,000g's

Prototype M759

- April 2009, 110 prototype fuzes assembled at Allegheny Ballistics Laboratory (ABL), Rocket Center WV
- Fuzes were assembled on the assembly line, and removed at the probe installation step to be hand assembled

- June 2009, soft target sensitivity testing was conducted at Alliant Technologies Proving Ground (ATPG), Elk River MN
- Prototype and production configuration M789 projectiles fired at ¼" plywood targets at a range of 1000m
- 45 prototype configuration projectiles detonated on impact with target, all prototype projectiles functioned on target
- 21 production configuration projectiles passed through plywood targets and detonated on impact with smash plate behind target, all production projectiles passed through target without functioning

Production Configuration M789, ¼" Plywood Target, 1000m

Prototype Configuration M789, ¼" Plywood Target, 1000m

- December 2009, sand target testing conducted at Yuma Proving Ground (YPG), Yuma AZ
- Prototype and production configuration M789 projectiles fired at a groomed sand pad at a 2000m range
- Complications with video coverage and projectile accuracy yielded few usable data points
- Delay can be seen in production configuration as projectile scrapes across the sand prior to detonating, no such delay seen in prototype configuration

Production Configuration M789, Sand Pad, 2000m

Prototype Configuration M789, Sand Pad, 2000m

Future Work

- Conduct assembly of additional 750 prototype cartridges
- Conduct Pre-First Article Acceptance Testing to verify performance
 - Arming, Non-Arming, TV-T, Target Reliability, Armor Plate Sensitivity
- Conduct Sand Berm Sensitivity Testing
 - Collect additional sand response data
- Conduct Brush Sensitivity Testing
 - ¹/₄" Plywood, 1/16" Chipboard, ¹/₂" Celotex, ¹/₄" Ø Wood Dowel Array

 Conduct fragmentation testing to quantify sensitivity affect on lethality

