

54th Annual Fuze Conference Session VA, 13 May 2010

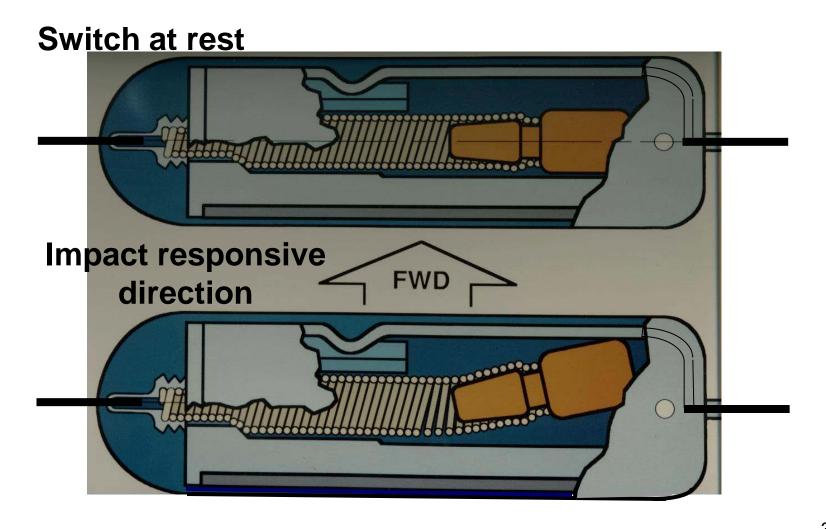
Impact Switch Investigation

Naval Air Warfare Center Weapons Division

Sam Tuey

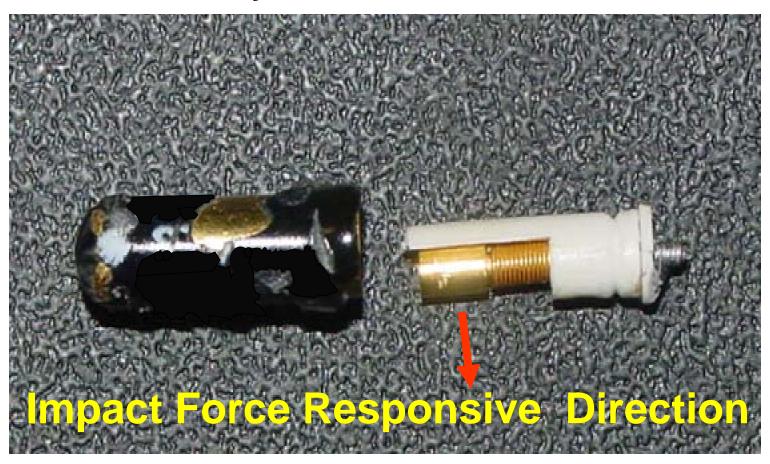
Code 478300D COM (760) 939-2698, DSN 437-2698 sam.tuey@navy.mil

Impact Switch Investigation



- Investigation objective is to characterize switch vibration response
 - Investigation is 40% complete
 - Vibration test level is based on estimated and actual flight test data
- Reporting on preliminary result
 - This data is not yet applicable to any system in use
 - Switch becoming more sensitive to vibration as exposure is accumulated
- Has plan to complete switch characterization with vibration levels from flight testing

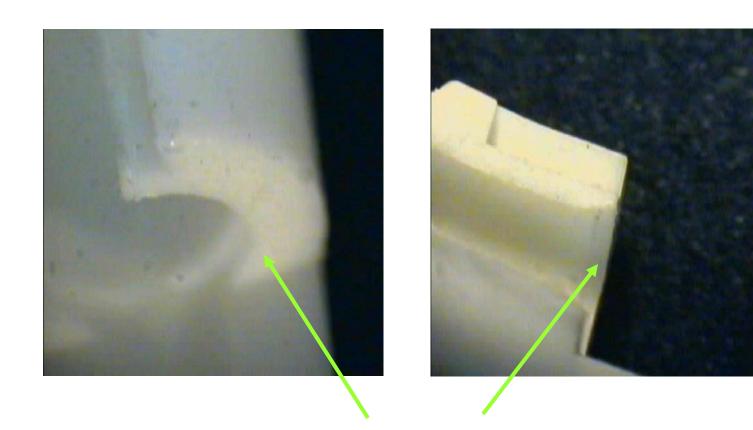
Impact Switch How It Works



Impact Switch Construction

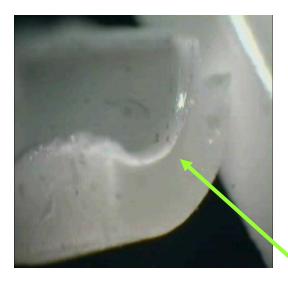
Partially disassembled switch

Impact Switch New vs. Worn Out

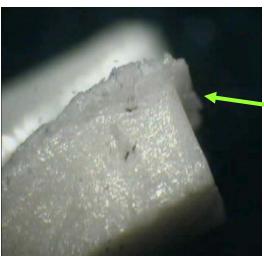

Control switch shows sharp corners

Worn switch shows deformed corners

New Impact Switch



New Switch Plastic Body

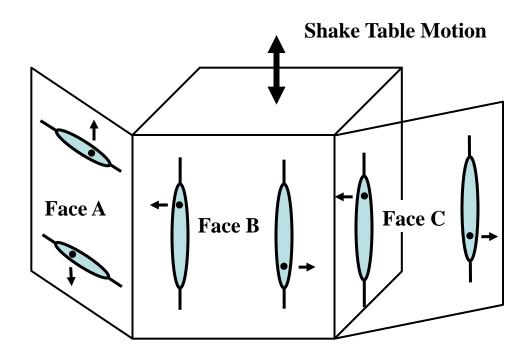


Worn Impact Switch

Body Deformed

Impact Switch Production Test Spec

- Pendulum Test
 - Switch remains open at velocity change
 x ft/s
 - Switch closes at velocity change = y ft/s
- Centrifuge test
 - Switch closes at xx g
 - Switch remains open at yy g
- Sine vibration environmental conditioning
 - 5 g for 30 minutes
 - Frequency sweep = 10 to 2k Hz

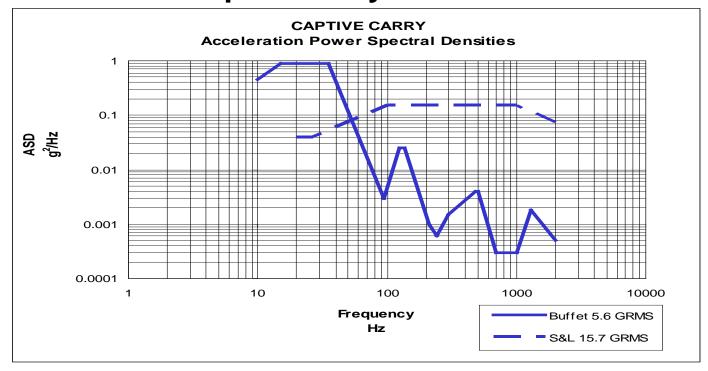


Impact Switch

Vibration Characteristic Test Set Up

Vibration test fixture (With up to 12 switches per side)

Impact Switch Placement on cube


Impact Force Responsive Direction

Impact Switch Vibration Test Levels

Estimated captive carry vibration test level

 Free flight vibration test level was from flight test data

Group1 Impact Switches Vibration Test Data

Looking for trigger threshold (12 Switches on Face A had response)

	Test 1	Test 2	Test 3	Test 4
Sine Sweep	Start from 5g, 50 - 2kHz	From 5 g going down, 5-150 Hz		
	5g = trigger,	0.7g = trigger, 35-50 and 80-90		
	50-120Hz	Hz		
Estimated Captive			Start from 1x	
Carry			1 x = trigger	
Free Flight				Start from 1x
				1x = no trigger 1.26 x = trigger

Group1 Impact Switches Vibration Test Data

Face B and C Switches Moved to Face A (10 Switches)

	Test 1	Test 2	Test 3	Test 4
Sine Sweep		Start from 5g going down		
		3g = trigger		
Captive Carry				
Free Flight	Start from 1x		Start from 1x	Start from 1x
	5x = trigger		3.16x = trigger	1.26x = trigger

Note the quick drop in free flight trigger threshold Switches would still pass G trigger threshold test

Fresh Impact Switches Vibration Test Data

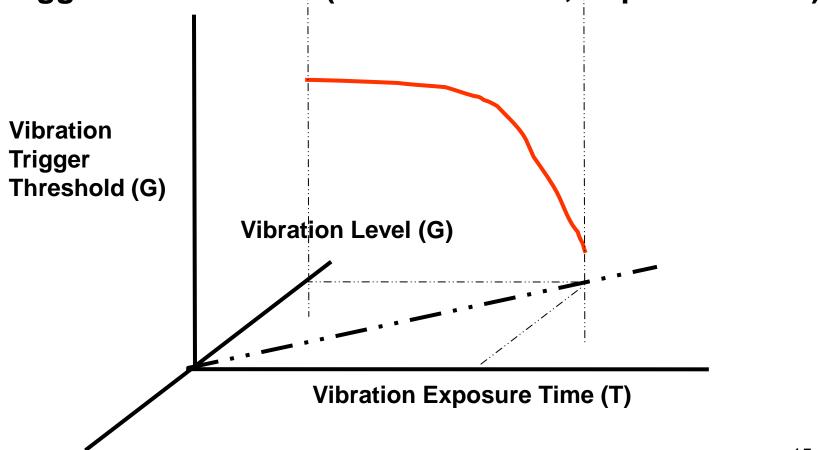
12 New Switches on Face A

	Test 1	Test 2
Sine Sweep		Start from 1g, 50–1kHz
		4g = trigger, 50-120Hz
Captive Carry		
Free Flight	Start from 1x	
	1 to 10 $x = no trigger$	

Impact Switch

Preliminary Characteristic/Conclusion

- Based on limited test data
- Transition from fresh to worn switch is TBD
 - Transition is rapid at a TBD level
 - No change in impact g trigger level
- New switch vibration trigger threshold
 - Sine: 4g, 80-90 Hz
 - Captive carry: TBD
 - Free flight: ≥ 10x
- Worn switch vibration trigger threshold
 - Sine: 0.7 g, 40-50 Hz and 80-90 Hz
 - Captive carry: ≤ 1x
 - Free flight: 1.26x
 - No change in impact g trigger level



Impact Switch To Complete Characterization

Plan is to get 3 D plot on switch:

Trigger Threshold = F(Vibration Level, Exposure Time)

