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The Goal and The Problem

e Explore planetary surfaces with robotic vehicles

* Understand the environment
« Search for signatures of life
* Prepare for eventual human exploration

e Time delays range from minutes to hours

 Many unknowns

* Atmospheric conditions
* Surface conditions

e Winds

* Location of hazards
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Mars Science Laboratory (MSL)
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Mars Exploration Rovers (MER)
Entry, Descent & Landing (EDL) Autonomy
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Mars Exploration Rovers (MER)
Entry, Descent & Landing (EDL) Autonomy
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Initiated by a ground-specified time.
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MER Entry, Descent,
& Landing

Descent image motion
estimation subsystem
(DIMES)

Safe landing map on terrain




MER Entry, Descent, and Landing 1

Entire EDL system is autonomous.
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Phoenix on the Chute




Mars Science Laboratory (MSL)
Entry, Descent & Landing (EDL) Autonomy

D e A series of open-loop timed actions tied at several
\ points to a closed-loop guidance algorithm
P s |controlling vehicle position, velocity, and orientation.
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Mars Science Laboratory (MSL)
Entry, Descent & Landing (EDL) Autonomy

Initiated by a ground-specified time. Closed-loop guidance through
d sensing of acceleration/angular rate (inertial measurement unit - IMU)
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MER Entry, Descent & Landing




MSL Entry, Descent & Landing
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MSL Ground Robotic Science

Dynamic Albedo
of Neutrons (DAN)

Solid Sarmple Inlets

Quadrupole Mass

Alpha Particle X-ray e
Spectrometer (APXS) Sample Analysis at Mars (SAM)



Sample Acquisition, Processing, and Handling

CHIMRA

MSL’s sampling system can:

Clean rock surfaces with a brush

Place and hold the instruments
on the arm (APXS and MAHLI)

Acquire samples of rock or soail
with a powdering drill or scoop

Sieve the samples and deliver
them to SAM, CheMin, or a tray
for observation

Exchange spare drill bits



ChemCam is a Laser Induced Breakdown Spectroscopy (LIBS)
Instrument with Remote Macroscopic Imaging (RMI) capability.
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Sample Analysis at Mars (SAM) gas
chromatograph can detect organic compounds

Gas Chromatograph (GC)  The GC columns can separate out individual gases from a
complex mixture into molecular components for Quadrupole
Mass Spectrometer and stand alone GC-mass spectrometry

(GC-MS) analysis. A wide range of organic compounds including

some of those relevant to life (amino acids, nucleobases,
carboxylic acids, amines) can be detected by GC-MS.

Location of SAM on
Mars Science
Laboratory rover

SAM engineers
holding GC
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GC integrated onto
SAM configuration SAM flight hardware



MER Driving Autonomy
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» Terrain assessment
(predictive hazard
detection)

> Path selection

GESTALT

Navigation
» Visual pose update

(visual odometry)

Visual Odometry



Autonomous Rover Surface Operations

Key capabilities that provide autonomous

operation of rovers millions of miles away
eAutonomous rover navigation

*Autonomous driving capability using stereo images for hazard
- detection and avoidance. The onboard software performs traversability
t S analysis on 3-D range data to predict vehicle safety at all nearby

= locations; robust to partial sensor data and imprecise position
’ estimation

*Visual odometry

*Capability to autonomously measure the progress of the rover
traverse by imaging the surrounding area and comparing the
successive images to provide an independent odometry from what is
measured by the rotation of wheels to account for wheel slippage

eInstrument placement

*Capability to autonomously traverse ~10 meters towards a rock
designated by scientists and orienting the rover such that an
instrument can be placed on the rock with ~1 cm accuracy. The
Simulation of § : onboard software uses visual tracking of the designated rock and

autonomous [T as R\ autonomously drives the rover towards the rock while avoiding
instrument placement s | hazards and computes a feasible rover orientation so that its
manipulator can place the instrument on the rock.

*Remote science operations

Actual map built
from MER Spirits
imagery

Remote Provides downlink data visualization, science activity planning,
Science g8 merging of science plans from multiple scientists and develops plans
Operations for autonomous science operations by the rover and its science

instruments



General Spacecraft Autonomy and Fault Protection

e The spacecraft independently monitors its state and acts
to maintain critical resources and capabilities:

— Attitude (e.g. knowledge with respect to sun or stars,
control based on available actuators)

— Power (e.g. solar cell orientation to sun, power states)

— Thermal (e.g. body orientation to sun, state of heaters,
power states)

— Communications (e.g. antenna orientation to Earth,
configuration of radios)

* Onboard systems generally execute sequences of
timed activities to control the spacecratft.

» Activities may include critical events like propulsive
maneuvers with state monitors and decision-
making. For example:

— Inertial measurement of accumulated Delta-V

— Monitoring for failed hardware and trigger of
autonomous recovery.




Autonomous Underwater Vehicle

Environmentally
Non-Disturbing
Under-ice Robotic
Antarctic Explorer
(ENDURANCE)




Possible future submersible seeking
liquid water on Europa or Enceladus
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