REDUCING ENERGY COSTS

RDML David H. Lewis RDML James P. McManamon

TEAM

SHIPS

13 October 2010

ENERGY IN SHIP

The Past

PEO

- Stern Flap
- Solid State Lighting
- Gaining Knowledge
 - AC units fighting space heaters
 - Integrated Condition Assessment
 - System (ICAS)

Energy Efficiency Enabling Technologies

2012	2016	Future
Hybrid Electric Drive	Hull Hydrodynamic Mods	New Engines and Generators
Alternate Fuels	Generator Mods	Fuel Cells
Solid State Lighting	Heat Energy Recovery	Wind Energy Harvesting
Foul Release Coatings	High Efficiency Chillers	Solar Energy Harvesting
Online GT Water Wash	Energy Dashboard	Air Film Hull Drag Reduction
GTG Efficiency Improvements	Propulsion Mods	
Combustion Trim Loop	Degaussing Mods	
Smart Voyage Planning Decision Aid	Modular Refrigeration Units	
Stern Flaps	Advanced RO Desalinator	
Variable Speed Drives	Electric Meters	
Low Solar Absorption Coatings	Energy Storage Module	

Energy Security Sailing Direction

- Leverage investments in Energy Efficiency Enabling Technologies
 - Reduce Fuel Consumption
 - Improve Power Conversion Efficiency
 - Increase Installed Power Generation
 - Increase/Maintain Combat Capability
- Implement TOC based approaches to ensure affordability
 - Modeling
 - Methodical Technology Development

Energy Surveys

Baseline shipboard energy consumption and identify major energy consumers on ships.

Sponsorship:

•PEO Ships for 1 survey (New Construction)•CPF-NAVSEA 21 for 2 surveys (In-Service)

Survey Phases:

Pre-Survey Research and Data Collection
At sea Data Collection (during multiple operational scenarios)

•Data Analysis

Ships:

•DDG 111

•DDG 51 Class

•LSD 41/49 Class

Energy Technologies Currently in the Fleet

Upcoming Energy Technologies in the Fleet

Stern Flaps for In-Service L Ships

USS WHIBDEY ISLAND (LSD 41) USS KEARSARGE (LHD 3)

Collaboration

Military Sealift Command

- Smart Voyage Planning Decision Aid
- Model Development
- Energy Surveys
- Maritime Working Group Member

Oceanographer of the Navy

- Smart Voyage Planning **Decision Aid**
- Physical Environment Authority MOU

COMPACFLT

- Energy Surveys
- ICAS
- Maritime Working Group Member

Office of Naval Research

 Maritime Working Group Member

International

- Royal Australian Navy
- International Frigate Working Group

Coast Guard

Maritime Working Group Member

Maersk

 Consulting on Commercial **Shipping Best Practices**

Department of Energy

•MOA

Leveraging Technology Investments

