

What Is MEADS?

- Tri-national air and missile defense (AMD) program for German, Italian, and US forces
- Replaces Patriot, Hawk, and Nike Hercules
- \$3.4B EUSD contract signed 28 September 2004
- 110-month Design and Development (D&D) program
- Tri-national contractor team includes Lockheed Martin, LFK, and MBDA Italia
 - Operations at six primary locations
 - Workforce of over 1800 skilled personnel

Key System Requirements

- Next-generation threats
- Tactical ballistic missiles/UAVs
- Cruise missiles and aircraft
- Conventional/unconventional

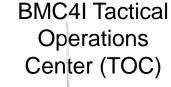
- Strategic and tactical airlift
- Continuous air and missile defense coverage for maneuver force
- Cross-country mobility

- Maneuver force protection
- Area defense
- Homeland defense
- Weighted asset protection

- 360-degree coverage
- Defended area ABTs, TBMs

- Designed for coalition warfare
- Operational with a range of systems
- Dramatic improvement in combat effectiveness and situational awareness

- Plug-and-fight
- Open architecture
- Non-proprietary software
- Operational flexibility


MEADS is the solution for challenging requirements not addressed in any single previous AMD system

MEADS System Elements

Surveillance Radar (SR)

Multifunction Fire Control Radar (MFCR)

Laur cher/ Reloader Certified Missile Round (CMR)

- 360-degree coverage
- Pulse Doppler radar
- Active phased array antenna
- Digital beamforming
- IFF subsystem
- 0 and 7.5 rpm rotation

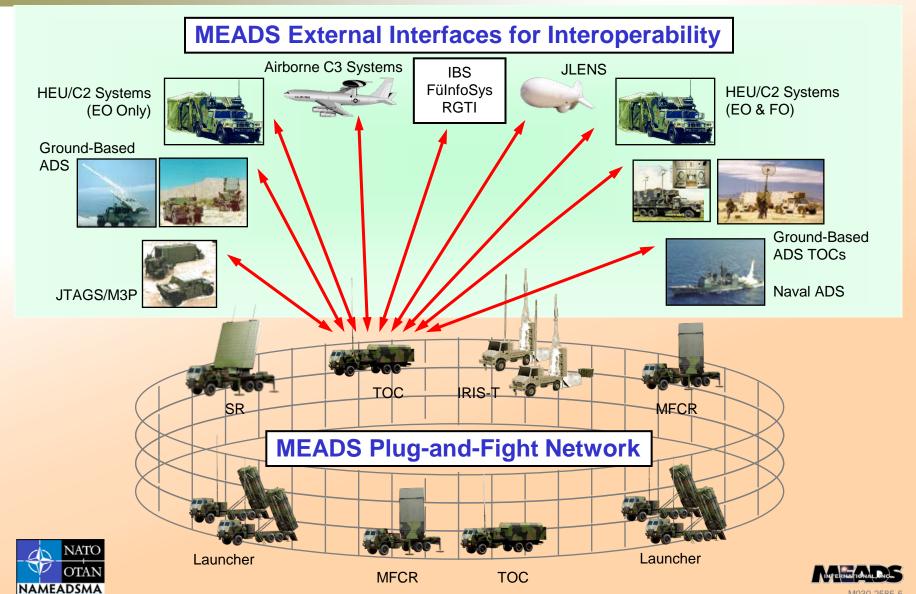
- Single-shelter TOC
- Real-time battle monitor links Engagement and Force Operations
- Coalition warfare
- Nation-specific features in common software package
- Tailorable workspace for Higher Echelon Unit operations

- 360-degree coverage
- Pulse Doppler radar
- Active phased array antenna
- Digital beamforming
- 0, 15, and 30 rpm rotation
- IFF subsystem
- Interceptor communication link

Launcher

- High firepower
- 8 missiles full load
- Near-vertical launch angle
- Can self-load flatracks
 Reloader
- Full or partial reload
- Subsystem commonality
- Comm equipment
- Pallet Load Handling and Erection System
- Crane

- Improved capability vs. PAC-3 CRI
- RF uplink and downlink



Highly mobile, force tailorable, System-of-Systems capable

MEADS Interfaces

MEADS Interceptor Enhancements

PAC-3 MSE

- MEADS baseline missile
- Increased performance, greater altitude and range
- Threat-driven upgrades to defeat the advancing threat set
- Successful intercept test on 18 February at White Sands Missile Range

IRIS-T SL

- First use of MEADS open architecture design to integrate other sensors and shooters in a robust system-of-systems solution for national air defense
- Integration benefits from inherent MEADS plug-and-fight capabilities

MEADS Program

05 06 07 08 09 Risk Reduction Successful SRR in 2005 Risk Reduction **Effort Modification** Effort (RRE) Successful PDR in 2007 (RREM) • MEI CDRs complete – July 2009 System Demo System-level CDR – August 2010 Flight tests in 2012 Design & System **** SRR 1st Flight / Development (D&D)



MEI CDRs complete – hardware designs approved

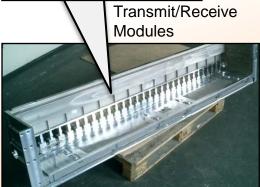
Critical Design Review Progress

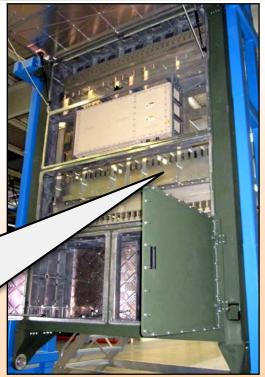
- Successfully completed final design reviews for all MEADS Major End Items and subsystems
- Engineering designs finalized for production of remaining hardware
- System-Level CDR events ongoing through August 2010
- System events permit final evaluation of MEADS survivability, logistics, safety, integration and test, life cycle cost, and performance

Significant progress toward final system design approval

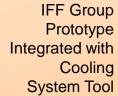
Integration and Test Summary

- Integration of Major End Item (MEI) emulators
- Integration with tactical MEI processors
- Integration with Unsheltered Tactical Operations Center
- Tactical software deliveries to support integration
- MEI integration
- Flight test facility development at White Sands Missile Range
- Integration of the MEADS System Stimulator for White Sands Missile Range operations


System integration has begun and continues with deliveries of tactical hardware and software

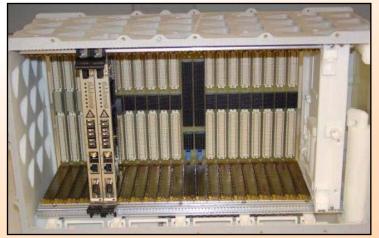


Multifunction Fire Control Radar Hardware Progress



Antenna Elevation Tests

Column Rack



Surveillance Radar Hardware Progress

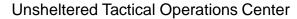


Partial Array under Test at Cazenovia Range SprayCool[®] Chassis

Transmit/Receive Assembly under Test

Environmental Control Unit Heat Exchanger

Mechanics and Positioning System in Test Fixture



Tactical Operations Center Hardware Progress

Operator Engagement Stations

Tactical Operations Center on Italian Prime Mover

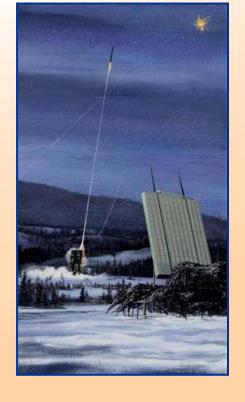
German Air Force Operator during User Assessment

NAMEADSMA

Launcher Hardware Progress

Identification Friend or Foe (IFF)

- European IFF device selected for MEADS
 - Protects friendly aircraft from being engaged by air defenses
- First U.S. system ever to rely on a non-U.S. cryptographic device
 - Performs multiple identification modes
 - Interoperable with NATO forces
- MEADS radars have greater range and sensitivity than legacy radars
 - Part of a comprehensive solution to address fratricide


Improvements in IFF have always been a high design priority for MEADS

MEADS and the Phased Adaptive Approach for European Missile Defense

- US Ballistic Missile Defense Review sets priorities
 - Protect allies and enable them to defend themselves
 - Provide defensive flexibility to adapt
 - Expand international efforts
- MEADS satisfies PAA tenets
 - Relocatable, reconfigurable, interoperable
- MEADS addresses short- and medium-range ballistic missiles – the primary threat to Europe
- MEADS complements THAAD and SM-3 with 360-degree protection against threats upper-tier systems cannot defeat
 - Aircraft, UAVs, cruise missiles
- MEADS forward-based German and Italian units would be interoperable with arriving US MEADS elements
- MEADS provides an opportunity for Germany and Italy to contribute to the PAA and European missile defense

Summary

MEADS provides superior battlefield capabilities with unprecedented flexibility

- 360-degree capability against entire threat suite
- Enhanced strategic transportability and tactical mobility
- Open architecture with plug-and-fight capability
- Tailored/scalable battle elements ensure coalition interoperability

MEADS program is making significant progress

- All hardware designs approved
- Production of radars, launchers, tactical operation centers, and reloaders is underway
- Program continues System-Level CDR; completion scheduled for August 2010
- Flight tests planned for 2012

Joint NAMEADSMA/MEADS International team committed to providing a world-class theater AMD system

A Global Effort

Work distribution capitalizes on national expertise to minimize development risk

Key Supportability Features

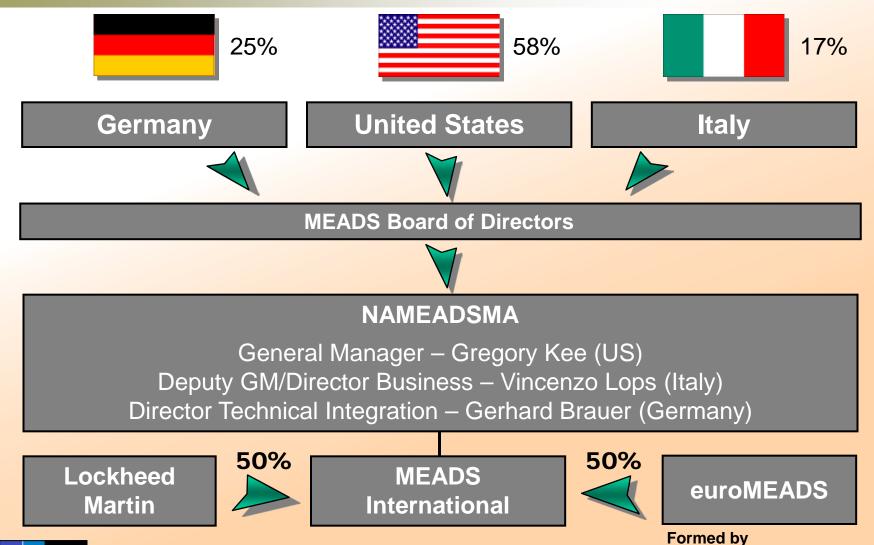
Design Requirements

- Reliable
- Maintainable
- Built-In Test
- Prognostics
- Embedded Training
- Over-the-Air Software Update
- Highly Transportable
- Commonality

Improve Ao by reducing Administrative Logistics Delay Time (ALDT) through onboard spares requirements

- MEIs required to allocate storage space for spares
- Additional unit-level spares carried in System Support Vehicle (SSV)

Scope Requirements


- Interactive Electronic Technical Manuals
- Modular Training Packages
- MEADS System Trainer
- Missile Handling Trainer
- Explosive Ordnance Disposal Trainer

Supportability attributes maximize Ao

MEADS Program Structure

 MBDA Deutschland (LFK)