

# Systems 2020 Strategic Initiative Overview

## Kristen Baldwin ODDR&E/Systems Engineering

13<sup>th</sup> Annual NDIA Systems Engineering Conference San Diego, CA | October 28, 2010



## **Need for Systems 2020**



- Adversary can use commercial technologies and new tactics to rapidly alter the threat to US forces
  - Increasing uncertainty in future Defense missions & environments
- DoD engineering, and business processes not structured for adaptability
  - Sequential, single step progression from fixed requirements
  - Individually designed, monolithic systems
  - Vulnerabilities from global supply chain
- New research, tools, pilot efforts needed to determine best methods for building adaptable defense systems



# The Urgency of Anticipation, Flexibility and Rapid Adaptability







# The Urgency of Anticipation, Flexibility and Rapid Adaptability







# The Urgency of Anticipation, Flexibility and Rapid Adaptability







## Systems 2020 Designing DoD Systems for Adaptability



Design Disciplines Platform Based Engineering
Using a common core
platform to develop many
related systems/capabilities

<u>Trusted System Design</u>
Developing trusted systems from untrusted components

Design Framework Model Based Engineering
Using modeling and simulation for rapid, concurrent, integrated system development and manufacturing

Adaptable DoD Systems

Capability on Demand
Real-time Adaptive Systems
Rapidly Reconfigurable Systems
Pre-planned Disposable Systems



## Systems 2020 Scope



- Systems 2020 technologies could apply to many domains
  - Platform Based Engineering (PBE), Model Based Engineering (MBE),
     Trusted Systems Design (TSD) are relevant to microelectronics,
     software, enduring defense platforms
- Focus of Systems 2020 is on system engineering disciplines and frameworks to build adaptable defense systems
- Significant business process challenges in addition to technical challenges
  - e.g., Challenging the requirements community to avoid specifying a fixed point solution, enforcing open architectures
  - Primary S-2020 focus is on the technical challenges

Faster delivery of adaptable systems that are trusted, assured, reliable and interoperable



## Platform-Based Engineering and Trusted Systems Design Disciplines



#### Notional Defense System

Today
Point design
to address
fixed, static
requirements



Threat and mission changes require extensive re-work or start from scratch

Expensive, slow to field

#### **PBE**

Inherently adaptable design to address dynamic, uncertain requirements



Core platform capable of rapidly accommodating threat and mission changes

 Well-defined architectures, interfaces allow a variety of systems configurations

#### PBE + TSD

Inherently adaptable and robust design to address dynamic, uncertain requirements



Additional partitioning of untrusted components and subsystems

Allow rapid response to trust violation

x, y, z, etc - subsystems and/or components



## Model Based Engineering Framework Designing for Adaptability



#### <u>Today</u>

Model selected critical subsystems

Lots of design – physical prototypes



- Design decisions and interactions captured on paper, lost in personnel turnover.
- Lack of iterative concept design environment.
- Manual integration across product design seams.
- Custom manufacturing solutions.

#### Stage 1

Segmented Virtual:

Concept Modeling
Product Modeling
Model Driven
Manufacturing

Iterative/ Adaptive

Concept Models

Process - Entire

Life Cycle

Manufacturing Models

Operational System

#### Stage 2

Fully Integrated Process Flow:

System Concept, Design, Build, Field, Adapt Adaptive Transparent Systems

- Emergence of open virtual design environment, interoperable tools and design data/artifacts.
- Early analysis of PBE and TSD system trades in concept, product, manufacturing models.
- Robust end-to-end open multi-scale design environment, tools, data, patterns & virtual/physical verification.
- Support full system PBE & TSD trades, responding to dynamic threats & trust scenarios.



## **Trusted Systems Design**



- Designing trusted systems using components or subsystems of unknown or suspect trustworthiness
  - Desire to leverage commercial technologies to provide enhanced warfighting capability, however...
  - Current patchwork of defensive methods are not adequate for using commercial technologies from across the globe
- Use Platform Based Engineering tools, techniques to design the system to address trust
  - Suspect components are isolated, not part of the enduring core
- Research gaps identified in three key areas:
  - Architectures to make systems less transparent to the attacker
  - Methods, models for implementing trusted system design throughout system lifecycle
  - Trustworthiness assessment tools and methodologies



# System 2020 Workflow to Achieve Adaptable Systems









# We are seeking input on key technical gaps and opportunities to shape research projects and pilots



## Systems Engineering Gaps and Critical Needs





SE Research Center S-2020 Study



Booz Allen Hamilton S-2020 Study BOOZ ALLEN HAMILTON Systems-2020 Study

Final Report Booz Allen Hamilton

8/16/2010

**Analysis of these reports** categorized gaps into 3 areas

#### Gaps

Need for a conceptual design environment

to integrate system modeling capabilities across domains

Lack of open,
virtual, realistic
environment for
validation,
testing and
manufacturing

#### **Lead to Critical Needs**

An integrated framework for concept, design and analysis of systems

- Accomodates custom and commercial tools based on open architectures and standards
- Common conceptual environment and design tools for seamless interoperability
- Capabilities to verify system integrity, promote modularity and re-use, and design for trust
- Enhanced multi-scale
   Mod/Sim tools that support cross domain testing



### **Overview of S-2020 Path Ahead**







## **Summary**



- DDR&E's Systems 2020 initiative develops the design disciplines and framework to build adaptable Defense systems
- Program consists of research, pilot projects and transition efforts to advance key technologies
  - Platform Based Engineering, Model Based Engineering, Trusted Systems Design
  - Rapidly reconfigurable systems
- Execution performed through partnership with Services, Government, Industry, Academia

We look forward to broad community engagement



# **Systems Engineering:**Critical to Program Success





Innovation, Speed, and Agility

http://www.acq.osd.mil/se