

JOG SYSTEM ENGINEERING GRAND SYSTEMS DEVELOPMENT TRAINING PROGRAM TUTORIAL

UNIVERSAL ARCHITECTURE DESCRIPTION FRAMEWORK

INTRODUCTION

Presented By Jeffrey O. Grady President JOG System Engineering 6015 Charae Street San Diego, CA 92122 (858) 458-0121 jeff@jogse.com jgrady@ucsd.edu

VERSION 12.0

2282A-1- 1

Who Is Jeff Grady?

CURRENT POSITION

President, JOG System Engineering, Inc.

System Engineering Assessment, Consulting, and Education Firm

PRIOR EXPERIENCE

1954 - 1964 U.S. Marines

- 1964 1965 General Precision, Librascope Div Customer Training Instructor, SUBROC and ASROC ASW Systems
- 1965 1982 Teledyne Ryan Aeronautical Field Engineer, AQM-34 Series Special Purpose Aircraft Project Engineer, System Engineer, Unmanned Aircraft Systems
- 1982 1984 General Dynamics Convair Division System and Group Engineer, Cruise Missile, Advanced Cruise Missile
- 1984 1993 General Dynamics Space Systems Division Functional Engineering Chief & Manager of Systems Development

FORMAL EDUCATION

SDSU, BA Math; UCSD, Systems Engineering Certificate;

USC, MS Systems Management with Information Systems Certificate

- **INCOSE** First Elected Secretary, Fellow, Founder, Expert System Engineering Professional
- AUTHOR System Requirements Analysis (2), System Verification, System Integration, System Validation and Verification, System Engineering Planning and Enterprise Identity, System Engineering Deployment, System Synthesis, System Management

Systems Jeff Grady Worked On

USN/Librascope ASROC/SUBROC Computer Systems

USAF/GD Convair AQM 129 Advanced Cruise Missile

USAF/GD Atlas Missile

USAF/Ryan AQM-81 Firebolt 1983

Ryan Aeronautical War Birds

USAF/Ryan Models 147G, NX, H, and J at Bien Hoa, SVN in 1968

USAF/Ryan AQM-34L Tom Cat 58 Combat Missions

U.S. Navy/Ryan Model 147SK

C JOG System Engineering

Who is Attending?

Small class

- Name
- Place of employment
- Modeling and requirements experience

• Large class

- At first break engage in conversation with someone you did not know when arriving for class
- Discuss modeling and requirements work

Tutorial Outline

- 1 Introduction
- 2 Traditional structured analysis overview
- **3 MSA/PSARE modeling overview and UADF construct**
- 4 UML/SysML modeling overview and UADF construct
- 5 The future

Enterprise Common Procss

X: REFER TO PROGRAM SYSTEM DEFINITION DOCUMENT FOR EXPANSION

Common Process Areas of Interest

VERSION 12.0

CJOG System Engineering.

The Foundation of System Engineering Knowledge Grows & We Have Our Limitations

We Are All Specialists Systems Are Developed by People Sharing Knowledge

BREADTH OF KNOWLEDGE

Models Support Information Sharing During Early Development

- When developing an unprecedented system it is helpful to model it as a way of learning more about it
- We have no reality to observe in the beginning so we must model

Bran Selic's Model Characteristics

- The use of <u>abstraction</u> to emphasize important aspects while removing irrelevant ones.
- Expressed in a form that is really <u>understandable</u> by observers.
- Fully and <u>accurately</u> represents the modeled system.
- <u>Predictive</u> such that it can be used to derive correct conclusions about the modeled system.
- Inexpensive meaning it is much cheaper to construct and study than simply building and observing the modeled system.

We Apply Models For Good Reasons

2282A-1-13

Visual Complexity Continuum Some Models Are Richer Than Others

- Some models are visually simple like functional flow diagramming
 - Ideas flow readily from model into the human mind through vision because of the simple graphics
 - Not a very rich story comes through
- Other models are more visually complex like IDEF-0, EFFBD, DoDAF
 - The picture does not transfer so easily into the mind visually
 - DoDAF includes 26 different artfacts
 - But it conveys a very rich story when it gets there

Modeling Sequencing

Which Comes First?

Architecture First Counter-Argument

- Early OOA authors all supported object entry into the problem space with DFD and state machine examination of objects
- Exactly opposite to Sullivan's idea of form follows function
- Murray Cantor's "Thoughts on Functional Decomposition" in The Rational Edge offers the best printed argument for this approach
- Principal argument seems to be that multiple lower tier alternative solutions will appear in the product but this is a failure of lower tier system integration and optimization and the standard PMP concept can be employed with software as well as hardware

Model Orientation Relative to Dynamic and Static Components

	STATIC COMPONENT	DYNAMIC COMPONENTS	
MULTI-FACETED MODELS	PRODUCT ENTITY FACET	FUNCTIONAL FACET	BEHAVIOR FACET
TRADITIONAL STRUCTURED ANALYSIS	ARCHITECTURE BLOCK DIAGRAM	FUNCTIONAL FLOW DIAGRAM	SCHEMATIC BLOCK DIAGRAM
MODERN STRUCTURED ANALYSIS AND HP	HIERARCHICAL DIAGRAM	DATA FLOW DIAGRAM	P SPEC, STATE DIAGRAM
EARLY OBJECT- ORIENTED ANALYSIS	CLASS AND OBJECT DIAGRAM	DATA FLOW DIAGRAM	STATE DIAGRAM
UML VARIATION OF OOA	CLASS AND OBJECT DIAGRAM, COMPONENT DIAGRAM, AND DEPLOY- MENT DIAGRAM	USE CASES AND ACTIVITY DIAGRAM	SEQUENCE DIAGRAM, STATECHART, AND COMMUNICATION DIAGRAM
SysML	BLOCK DIAGRAMS	USE CASES AMD ACTVITY DIAGRAM	SEQUENCE DIAGRAM AND STATECHART

ANALYTICAL ENTRY FACET

The History of Requirements Modeling

The First Objective of Modeling - Requirements Identification

Requirement Types

System composition

- What does the system consist on in terms of entities?
- What relationships (interfaces) must exist between them?

• Entity and relationship essential characteristics

- Performance (Functional)
 - What does it have to do and how well does it have to do it?
- Design constraints (Non-functional)
 - Boundary conditions that the design team must remain within while satisfying performance requirements of three kinds
 - Interface
 - Specialty Engineering/Quality
 - Environmental

Writing Requirements is not Difficult

• The hard job is

- Knowing what to write them about and
- Determining numerical values that should be in them
- Thus we use models to gain insight into the essential characteristics
 - The models are composed of simple graphics
 - Model symbols (lines, block, bubbles,) relate to requirements that are derived from the model
 - The models encourage completeness and avoidance of unnecessary content
 - Models focus our human thought processes
- And good engineering to determine appropriate values

Requirement Primitive Form

- The subject identifies the attribute that must be controlled
- A form of the verb shall shows the degree of determination that the design must possess a capability.
- The remainder of the sentence provides a value and the relationship between the value and the attribute.
- In primitive form:

Speed ≥ 695 knots

What is a Specification?

A specification is a document that contains all of the essential characteristics for a given item.

Must it be a paper document?

In Writing a Specification, What Is the Target?

Requirements Derivation Strategies

A Universal Model for the Future?

UADF Modeling Artifacts Summary

		UNIVERSAL ARCHITECTURE DESCRIPRION FRAMEWORKS				
		FUNCTIONAL	MSA-PSARE	UML-SYSML		
PRODUCT ENTITY DEFINITION		ALLOCATION	SUPPER BUBBLES	SEQ DIAGRAM LIFE LINES OR ACTIVITY DIAG SWIM LANES		
PRODUCT ENTITY REQUIREMENTS	PERFORMANCE REQUIREMENTS	FLOW DIAGRAMS, IDEF-0, BEHAVIOR DIAGRAMS, OR ENHANCED FFBD	DFD/CFD, P-SPEC, C-SPEC, AND DATA DICTONARY	USE CASE, SEQUENCE, ACTIVITY, AND STATE DIAGRAMS		
	INTERFACE REQUIREMENTS	N-SQUARE AND SCHEMATIC BLOCK DIAGRAM	DIRECTED LINE SEGMENTS THAT CROSS SUPER BUBBLE BOUNDARIES	DIRECTED LINE SEGMENTS THAT JOIN LIFE LINES		
	SPECIALTY ENGINEERING REQUIREMENTS	SPECIALTY ENGINEERING SCOPING MATRIX	SPECIALTY ENGINEERING SCOPING MATRIX	SPECIALTY ENGINEERING SCOPING MATRIX	AINTS AINTS ASION	
	ENVIRONMENTAL REQUIREMENTS	THREE-LAYER MODEL	THREE-LAYER MODEL	THREE-LAYER MODEL	CONSTER	
SOLUTION SPACE MODELS		PRODUCT ENTITY BLOCK AND SCHEMATIC BLOCK DIAGRAM	ARCHITECTURE MODEL	CLASS/OBJECT DIAGRAM, COMPONENT DIAGRAM, DEPLOYMENT DIAGRAM, BLOCK DEFINITION DIAGRAM, AND INTERNAL BLOCK DIAGRAM		

Model Results Flow Into Specification Content

Universal Specification

1	Scope			
2	References			
3	Requirements			
3.1	Modeling (States and Modes)			
3.1.1	Need			
3.1.2	User Requirements			
3.1.3	Use Case Modeling			
3.1.4	Product Entity Modeling	—		
3.1.5	Interface Modeling ———		7	
3.1.6	Specialty Engineering ——		+	
	Modeling			
3.1.7	Environmental Modeling ——			
3.2	Capabilities ┥			
3.3	Interfaces		┘│	
3.4	Specialty Engineering -			
4.5	Environmental			
4	Verification			
5	Packaging and Shipping			
6	Notes			

Development Life Cycle Overview From a Universal Architecture Perspective

JOG SYSTEM ENGINEERING GRAND SYSTEMS DEVELOPMENT TRAINING PROGRAM TUTORIAL

UNIVERSAL ARCHITECTURE DESCRIPTION FRAMEWORK

TRADITIONAL STRUCTURED ANALYSIS OVERVIEW

Hardware and Systems Analysis Models

• Traditional structured analysis

- Functional analysis
 - Functional flow diagramming
 - Enhanced functional flow diagramming, used in CORE
 - Behavioral diagramming, used in RDD-100 derived from IPO
 - IDEF 0 derived from SADT
 - Process flow analysis
 - Hierarchical functional analysis
 - FRAT
- State diagramming
- Specialty engineering scoping and discipline-specific modeling
- Three-tier environmental requirements construct
- Product entity structure
- Requirements analysis sheet
- SysML

The Big Bang Theory Of System Development THE TRADITIONAL SRA APPROACH

EVERYTHING FLOWS FROM ONE IDEA,

THE

CUSTOMER NEED

BA-BA-BA-BANG

THE ULTIMATE FUNCTION

The Beginning of Functional Decomposition

The Current System Development Paradigm

Functional Analysis and Allocation

Functional Flow Diagramming Levels

Functional Allocation Pacing Alternatives

- Serial performance
 - Functional analysis until complete then allocate and conceptualize
- Instant allocation
 - See function, allocate function
- Layered allocation
 - FRAT concept
- Progressive allocation

FRAT Layered Perspective

From the work of Bernard Morias and Brian Mar.

Progressive Tuning of the Functional Analysis

Lower level functional analysis guided by higher level concept definition

Results in tuning the action oriented functional flow diagram to a physical process diagram adequate for detailed logistics support analysis at lower tiers and environmental use profiling.

Use System Decomposition Deployable Sonar Array

Use System Decomposition AQM-81 USAF/Ryan Firebolt Target System

USE TARGET

Use System Decomposition Atlas Space Transport System

USE

Use System Decomposition Pilot Training Simulator

OPERATE SYSTEM

F47

RE-ENTER TRAINING MISSION F477 RESET XOF F478 TRAINER FUNCTIONS F476 F473 PILOT FUNCTIONS PRE-ACCOMPLISH LANDING, TURN-UP. FLY OPERATION PREFLIGHT ►(XOR TAXI AND XOR AND TAXI, AND MISSIO N AND SETUP TAKEOFE SHUTDOWN F4731 F4732 F4733 F4734 F4735 MOTION FUNCTIONS F475 VISUAL FUNCTIONS F474 SHUT START-UP DOWN MODIFICATION SYSTEM OR INSTALLED F472 F479 DISPOSAL NON-OP AND READY STATE F471 MAINTAIN LOGISTICS LOGISTICS SYSTEM SUPPORT SUPPORT READINESS F47A F47 C JOG System Engineering 2282A2-14 VERSION 12.0

Deriving Performance Requirements

Aircraft shall be capable of flight at an airspeed > 700 knots.

3.2.1.2 Position error at an end of leg shall be less than or equal to 200 feet in along track and cross track directions.

The End of Functional Decomposition In the Product Entity Structure

Buy it at that level
Will surrender to design by one of your design teams

VERSION 12.0

2282A2-16

Alternative Functional Models IDEF-Ø Diagram

Alternative Functional Models Behavioral Diagramming From RDD-100

Alternative Functional Models Enhanced Functional Flow Block Diagramming

Timeline Diagramming

Assume for the moment that we have this functional flow diagram. How might we depict the timing requirements for these functions?

Timeline Diagramming

Alternative Functional Models Hierarchical Functional Analysis

Traditional RAS

FUNCTION		PERFORMANCE	PRODUCT ENTITY		
ID	NAME	REQUIREMENTS	ID	NAME	
F4712 F4713 F4714 F4715	Flt to target	Airspeed ≥ 700 knots	A11 A14	Flight vehicle	

Function-Entity Matrix (Traditional RAS)

RAS-Coordinated N-Square Diagram

Specialty Engineering Scoping Matrix

a. Specialty Engineering Scoping Matrix

b. Requirements Analysis Sheet (RAS)

Specialty Engineering Allocation SPECIALTY DISCIPLINE H7 ALLOCATED TO ENTITY A11

System Environmental Classes

Three-Tier Environmental Requirements Construct

RAS Complete

Traditional Structured Analysis

RAS-Complete, Fed From All Sources

VERSION 12.0

RAS-Complete In Table Form

MODEL MID	ENTITY MODEL ENTITY NAME	REQUI RID	REMENT ENTITY REQUIREMENT	PRODI PID	JCT ENTITY ITEM NAME	DOCUMI PARA	ENT ENTITY TITLE
F47 F471 F4711	Use System Deployment Ship Operations Store Array Operationally	XR67	Storage Volume < 10 ISO Vans	A A A1	Product System Product System Sensor Subsystem		
H H11 H11 H11 H11 H12 H12 H12 H12 H12	Specialty Engineering Disciplines Reliability Reliability Reliability Reliability Maintainability Maintainability Maintainability Maintainability Maintainability	EW34 RG31 FYH4 G8R4 6GHU U9R4 J897 9D7H	Failure Rate < 10 x 10-6 Failure Rate < 3 x 10-6 Failure Rate < 5 x 10-6 Failure Rate < 2 x 10-6 Mean Time to Repair < 0.2 Hours Mean Time to Repair < 0.4 Hours Mean Time to Repair < 0.2 Hours Mean Time to Repair < 0.2 Hours Mean Time to Repair < 0.1 Hours	A A1 A11 A12 A13 A1 A11 A12 A13	Product System Sensor Subsystem Cable Sensor Element Pressure Vessel Sensor Subsystem Cable Sensor Element Pressure Vessel	3.15 3.15 3.15 3.15 3.15 3.16 3.16 3.16 3.16	Reliability Reliability Reliability Reliability Maintainability Maintainability Maintainability Maintainability Maintainability
I 11 111 1181 1181 1181	System Interface Internal Interface Sensor Subsystem Innerface Aggregate Signal Feed Source Impedance Aggregate Signal Feed Load Impedance System External Interface	E37H E37i	Aggregate Signal Feed Source Impedance= 52 ohms + 2 ohms Aggregate Signal Feed Load Impedance= 52 ohms + 2 ohms	A A1 A1 A4 A4	Product System Product System Sensor Subsystem Analysis and Reporting Subsystem Product System		
Q QH QI QN QN1 QX	System Environment Hostile Environment Self-Induced Environmental Stresses Natural Environment Temperature Non-Cooperative Environmental Stresses	6D74	-40 degrees F< Temperature < +140 degrees F	A A A A A A	Product System Product System Product System Product System Product System Product System		

Specification Generator and Modeling Work Product Capture

Derive Requirements From the TSA Model

- 3 **REQUIREMENTS**
- 3.1 Modeling
- 3.1.1 Need
- 3.1.2 User Requirements
- 3.1.3 Traditional Structured Modeling
- 3.1.4 Product Entity Modeling
- 3.1.5 Interface Modeling
- 3.1.6 Specialty Engineering Modeling
- 3.1.7 Environmental Classes and Modeling
- 3.2 Capabilities
- 3.3 Interface Requirements
- 3.4 Specialty Engineering Requirements
- 3.5 Environmental Requirements

SAR Organization

SAR Organization For Traditional Structured Analysis

Extending TSA to Software

- We will not spend a lot of time on this because most of us understand how flow charting was used in software development
- But a UADF can clearly be built reflecting how modeling was done in the 1950 and 1960s
- The blocks represented computer processing required and the directed line segments the sequence of processing.
- HIPO extended the diagram latterly to cover data flow.
JOG SYSTEM ENGINEERING GRAND SYSTEMS DEVELOPMENT TRAINING PROGRAM TUTORIAL

UNIVERSAL ARCHITECTURE DESCRIPTION FRAMEWORK

MSA/PSARE OVERVIEW AND UADF CONSTRUCT

Period Goals

- Review the MSA approach derived from work by Yourdon, DeMarco, and others
- Extend the MSA model to the PSARE model that deals with control aspects of problem space and extends coverage to systems and hardware entities.
- Show how PSARE applies to hardware as well as software development

Computer Software Modeling Alternatives

Process-oriented modeling

- Miscellaneous early methods
 - Flow charting
 - HIPO, IPO, behavioral diagrams
 - Structure diagram
 - Modern structured analysis
 - Yourdon-Demarco
 - Hatley-Pirbhai real time method now known as PSARE

Data oriented

- Table normalizing
- IDEF-1X
- DoDAF
- Object oriented
 - Early OOA
 - UML

Modern Structured Analysis Modeling Sequence

C JOG System Engineering

Modern Structured Analysis Context Diagram - The Ultimate DFD

Modern Structured Analysis A Scenario in the Form of an Event List

Elevator System Event List	
1.	Passenger issues up summons request.
2.	Passenger issues down summons request.
3.	Elevator reaches summoned floor.
4.	Elevator not available for summons request.
5.	Elevator becomes available for summons.
6.	Passenger issues destination request.
7.	Elevator reaches requested destination.
8.	Elevator arrives at floor.
9.	Elevator departs floor.
10.	Elevator fails to move (goes out of service).
11.	Elevator returns to normal service.
12.	Elevator becomes overloaded.
13.	Elevator load becomes normal.

Phrase events from perspective of the environment

From Yourdon, "Modern Structured Analysis"

VERSION 12.0

Modern Structured Analysis Environmental Modeling Artifacts

From Derek Hatley and Imitiaz Pirbhai, "Strategies For Real-Time System Specification", Dorset House, 1988

Modern Structured Analysis Data Dictionary

- One data dictionary line item for each line or store on each DFD
- Name the data item and define it with mathematical precision

Modern Structured Analysis Process Specification Examples

PSPEC 1.1 Measure Motion

For each pulse of SHAFT ROTATION

```
Add 1 to DISTANCE COUNT then set:
```

DISTANCE = DISTANCE COUNT/MILE COUNT

At least once per second, measure pulse rate of SHAFT ROTATION in pulses per hour, and set:

SPEED = Pulse Rate/MILE COUNT

At least once per second, measure rate of change of SHAFT ROTATION pulses in pulses per hour, and set:

ACCELERATION = Rate of change/MILE COUNT

PSPEC 1.2 Measure Mile

Each time activated, start counting SHAFT ROTATION pulses

While LOWER LIMIT <a> pulse count <a> UPPER LIMIT Set MILE COUNT = pulse count Otherwise

Set MILE COUNT = DEFAULT COUNT

NOTE: All words in all-caps must be explained in dictionary. From Hatley, Pirbhai, Strategies for Real-Time System Specification

Entity Relationship Diagram (ERD)

- Extension for MSA to better deal with real time control
- Formerly known as Hatley Pirbhai
- PSARE = Process for System Architecture and Requirements Engineering
- Also extends MSA into systems work
- PSARE is closest to a universal architecture description framework of all existing models

Also Includes the Context Diagram

PSARE Delta

• DFDs illustrate information, energy, or material processing within the system.

One DFD for each process at a particular level.

Lower tier DFDs expand on the information represented by the parent process.

As a whole, a set of DFDs represent requirements statements at increasing levels of detail.

Data stores retain information from a flow after the source ceases sending it.

DFD processes may deal with discrete or continuous data.

PSPECs define each process in terms of the relationship between input and output.

Brief, concise narrative descriptions of the functions of a process at lowest level of decomposition.

Can contain, text, diagrams, or structured English.

Represents the requirements of the process and not the design.

They correlate with the process bubbles on the DFD at the lowest tier.

CFDs illustrates what the process must do under any given conditions.

CFD bubbles mirror the DFD structure.

CFD flows can be shown on one plane using dashed lines

Data conditions are control signals generated within PSPECs through tests on data.

Process controls are generated from logic in CSPECs and activate/deactivate DFD processes.

• CSPECs define behavior needed to control the system.

Control behavior defined in terms of finite state machines (combinatorial or sequential). Inputs are control flows from CFDs.

Outputs are process activators and control flows into CFDs.

• REQUIREMENTS (or Data) DICTIONARY defines all data and control elements.

One line item for each flow on every DFD and CFD.

PSARE Requirements Model

Requirements (Data) Dictionary

- One data dictionary line item for each line or store on each DFD
- Name the data item and precisely define it with mathematical precision

From Hatley, Pirbhai, "Strategies for Real-Time System Specification"

Combined DFD/CFD

VERSION 12.0

2282A3- 17

C JOG System Engineering

PSARE Isolated DFD

From Derek Hatley and Imitiaz Pirbhai, "Strategies For Real-Time System Specification, Dorset House", 1988

Process Specification Examples

– PSPEC 1.1 Measure Motion

For each pulse of SHAFT ROTATION

Add 1 to DISTANCE COUNT then set:

DISTANCE = DISTANCE COUNT/MILE COUNT

At least once per second, measure pulse rate of SHAFT ROTATION in pulses per hour, and set:

```
SPEED = Pulse Rate/MILE COUNT
```

At least once per second, measure rate of change of SHAFT ROTATION pulses in pulses per hour, and set:

ACCELERATION = Rate of change/MILE COUNT

- PSPEC 1.2 Measure Mile

Each time activated, start counting SHAFT ROTATION pulses

Set MILE COUNT = DEFAULT COUNT

NOTE: All words in all-caps must be explained in dictionary.

VERSION 12.0 2282A3- 20 C JOG System Engineering

C-Specs - Generic Combinational Machine

CSpec - Generic Sequential Machine

VERSION 12.0

2282A3-23

C JOG System Engineering

PSARE Decision Table

NEUTS OUTPUTS MODE TEMP PRESS IBATER PUMP HIGH OFF HCH OFF IDLE LOW OFF LOW HIGH OFF **O**FF l OW **OFF** OFF HIGH HICH OFF AUTO 1 LOW OFF ON HGH LOW OFF ON LOW ON ON HGH OFF HGH **OFF** AUTO 2 LOW **OFF** ON HICH LOW OFF ON LOW **ON** OFF

ONLY FOUR POSSIBLE OUTPUTS: Both Pump And Heater Off Both Heater And Pump On Heater On, Pump Off (May Be Dangerous) Heater Off, Pump On 2282A3- 24 © JOG System Engineering

- Define inputs
- Determine all possible values of each input
- Determine output results desired for each input condition
- Review for impossible input combinations
- Review for combinations that can be grouped

Sample System Analysis - The Context Diagram

Sample System Analysis – Context Diagram Expansion

Sample System Analysis - Super Bubbles

PSARE Sample System Analysis - DFD

Common Product Entity Structure

PSARE The Requirements Dictionary is the RAS

PSARE Deriving Specification Content

VERSION 12.0

Continue Reading About MSA and PSARE

- Tom DeMarco, "Structured Analysis and System Specification",1979
- Edward Yourdon and Larry Constantine, "Structured Design", Prentice hall, 1979
- Victor Weinberg, "Structured Analysis", Yourdon Press, 1980
- Edward Yourdon, "Modern Structured Analysis", Yourdon Press, 1989
- Derek Hatley, Peter Hruschka, and Imtiaz Pirbhai, Process For System Architecture and Requirements Engineering", Dorset House, 2000

JOG SYSTEM ENGINEERING GRAND SYSTEMS DEVELOPMENT TRAINING PROGRAM TUTORIAL

UNIVERSAL ARCHITECTURE DESCRIPTION FRAMEWORK

UML-SysML OVERVIEW AND UADF CONSTRUCT

UML-SysML UADF Components

- Hardware Models
 - Traditional Structured Analysis

Computer Software Models

- Process-oriented analysis
 - Flow charting
 - Modern Structured Analysis
 - PSARE

Data-oriented analysis

- Table normalizing
- IDEF-1X
- Object-oriented analysis
 - Early models

Benefits of SysML/UML UADF

- Top-Down
- Respect for Sullivan (dynamic opening)
- Seamless HW/SW switch
- Thoroughly modern
- Well supported by tool companies

UML and TSA Not Too Far Apart Actually

UNIFIED MODELING LANGUAGE (UML)

TRADITIONAL STRUCTURED ANALYSIS (TSA)
SysML/UML UADF With Common Solution Space Models

VERSION 12.0

C JOG System Engineering

The Diagrams of UML 2.0

- For modeling dynamic parts of the system
 - ✓ Use case diagram
 - ✓ Sequence diagram
 - Timing diagram
 - ✓ Communication diagram (renamed in 2)
 - ✓ State diagram
 - ✓ Activity diagram
 - Interaction overview diagram (2)
- For modeling static parts of the system
 - ✓ Object and class diagrams
 - ✓ Component diagram
 - ✓ Deployment diagram
 - Composite structure diagram (2)
 - Package diagram (2)

(2) = added in UML 2.0 ✓ Diagrams discussed in tutorial

The Diagrams in UML and SysML

Toward a Universal Model Using UML-SysML Modeling Artifacts

UML-SysML Model Combination

A Universal Model for the Future?

Two Older Inside-Outside Views of Systems

Use Cases The UML-SysML View of a System

UML-SysML Dynamic Modeling Artifacts

Sequence Diagram

Covers messages between entities but can't handle material or energy relationships in UML. Can do in SysML.

Communication Diagram

- Actually identical to sequence diagram content.
- Note used in SysML where it is replaced with block diagrams

Activity Diagram The old flow chart lives!

State Diagram For a Bang-Bang Thermal Control System

UML Static Modeling Artifacts Organization of the Design Solution

Replaced by block diagrams in SysML

SysML Blocks Static Elements of the System

- Internal Block Diagram
- Exposes the internal interactions inside of a block
- The interconnecting lines can represent relationships as diverse as the glue holding the wiper sensor to windshield or an interface command channel
- Object, component, and node used in UML – why different?

SysML Blocks Static Elements of the System

SysML/UML Modeling Use Case Analysis Example

Hierarchical Structure for UML-SysML Analysis

VERSION 12.0

C JOG System Engineering

SysML/UML Modeling Dynamic Modeling Artifacts Example

VERSION 12.0

2282A4-

C JOG System Engineering

All Possible Inter-Model Transfers

UADF Inter-Model Transfers With a SysML/UML UADF

UML- SysML Cyclical Analysis

VERSION 12.0

2282A4-25

C JOG System Engineering

Entity Identification Using UML-SysML

UML-SysML Dynamic Modeling Overview

Combined Product Entity Structure

Entity identification flows from sequence, activity, or communication diagramming work

VERSION 12.0

2282A4-

C JOG System Engineering

Possible Software Expansion

Specialty Engineering Modeling

Once we know what the entities are we can investigate them from a specialty engineering perspective

a. Specialty Engineering Scoping Matrix

b. Requirements Analysis Sheet (RAS)

Environmental Modeling

Computer Software Environmental Factors

- Language
- Compiler
- Machine Structure
- Memory
- Clock Speed

JOG SYSTEM ENGINEERING GRAND SYSTEMS DEVELOPMENT TRAINING PROGRAM TUTORIAL

UNIVERSAL ARCHITECTURE DESCRIPTION FRAMEWORK

THE FUTURE

What Will the Future Look Like?

- A single model for the problem space no matter the specific product will be developed in hardware or software
- Requirements embedded in problem space models encouraging requirements compliance in design models with the specifications appearing in the form of models
- A connected series of models for design
- Inter-model effects observable directly rather than individual human interpretation of effects followed by conversation and action - can we do this?
- Verification linkage through models
- Eventual connection between the problem space modeling and CAD-CAM models.
- A business process model coordinated with engineering modeling

Model-Driven Challenges

- Will it be possible for managers to avoid whiplash due to the speed of the analytical process?
- Can we provide adequate exposure of the ongoing and dynamic modeling work to encourage sound management of the development process?
- Will it really be possible to build models that fully express the problem space essential characteristics (requirements) while permitting a solution space larger than a single solution?

The Computer Network Becomes a Team Member in Good Standing

Development Evolution Timeline, Driving Methods Staging

Development Evolution Timeline, Program Percentages?

VERSION 12.0

Our Current Best Toolbox?

Possible Interim Tools Suite

2282A5-8
Specification Generator The Same Machinery Used for TSA

Three Ways to Capture the Modeling

- Within specification paragraph 3.1.3
- In a system architecture report (SAR) referenced in paragraph 3.1.3
- Within the computer tool used to accomplish the modeling work with a reference in paragraph 3.1.3 to the tool content

SAR Organization For UML-SysML

Combined RAS

We need a set of MID codes that we can use to couple modeling structures to requirements derived from them.

MODEL	ENTITY	REQUI	REMENT ENTITY	PRODU	JCT ENTITY	DOCUM	ENT ENTITY
MID	MODEL ENTITY NAME	RID	REQUIREMENT	PID	ITEM NAME	PARA	TITLE
F47	Use System			A	Product System		
F471	Deployment Ship Operations			A	Product System		
F4711	Store Array Operationally	XR67	Storage Volume < 10 ISO Vans	A1	Sensor Subsystem		
	,				,,		
H	Specialty Engineering Disciplines			A	Product System		
H11	Reliability	EW34	Failure Rate < 10 x 10-6	A1	Sensor Subsystem	3.1.5	Reliability
H11	Reliability	RG31	Failure Rate < 3 x 10-6	A11	Cable	3.1.5	Reliability
H11	Reliability	FYH4	Failure Rate < 5 x 10-6	A12	Sensor Element	3.1.5	Reliability
H11	Reliability	G8R4	Failure Rate < 2 x 10-6	A13	Pressure Vessel	3.1.5	Reliability
H12	Maintainability	6GHU	Mean Time to Repair < 0.2 Hours	A1	Sensor Subsystem	3.1.6	Maintainability
H12	Maintainability	U9R4	Mean Time to Repair < 0.4 Hours	A11	Cable	3.1.6	Maintainability
H12	Maintainability	J897	Mean Time to Repair < 0.2 Hours	A12	Sensor Element	3.1.6	Maintainability
H12	Maintainability	9D7H	Mean Time to Repair < 0.1 Hours	A13	Pressure Vessel	3.1.6	Maintainability
1	System Interface			A	Product System		
11	Internal Interface			A	Product System		
111	Sensor Subsystem Innerface			A1			
1181	Aggregate Signal Feed Source	E37H	Aggregate Signal Feed Source	A1	Sensor Subsystem		
	Impedance		Impedance= 52 ohms ± 2 ohms				
1181	Aggregate Signal Feed Load	E37I	Aggregate Signal Feed Load	A4	Analysis and Reporting		
	Impedance		Impedance= 52 ohms <u>+</u> 2 ohms		Subsystem		
12	System External Interface			A	Product System		
Q	System Environment			A	Product System		
QH	Hostile Environment			A	Product System		
QI	Self-Induced Environmental			A	Product System		
	Stresses						
QN	Natural Environment			A	Product System		
QN1	Temperature	6D74	-40 degrees F< Temperature	A	Product System		
	New Oceanority Frederics		< +140 degrees F		Desident Desident		
QX	Non-Cooperative Environmental			A	Product System		
0.000	Stresses						

UML Model/SRS Template Correlation If You Must Use MIL-STD-498/EIA J STD-016

Requirements Required States and Modes **CSCI** Capability Requirements (CSCI Capability) **CSCI External Interface Requirements** Interface Identification and Diagram (Project Unique Interface Identifier) CSCI Internal Interface Requirements **CSCI** Internal Data Requirements Adaptation Requirements Safety Requirements Security and Privacy Requirements **CSCI Environment Requirements Computer Resource Requirements Computer Hardware Requirements Computer Hardware Resource Utilization Requirements Computer Software Requirements Computer Communications Requirements** Software Quality Factors **Design and Implementation Constraints Personnel-Related Requirements Training-Related Requirements** Logistics-Related Requirements Other Requirements Packaging Requirements Precedence and Criticality of Requirements

3.18

Model Results Flow Into Specifications Content Through the RAS

Models				Universal Specification]
Problem Space Models	RAS		1	Scope	
Context Diagram			3	Requirements	
Use Case			3.1 3.1.1	Requirements Derivation Sources Non-Modeling Sources	
Sequence Diagram		-	3.1.2	Problem Space Modeling	Ī
Activity Diagram			3.1.3	Solution Space Modeling	
State Diagram			3.1.3.1	Interface Modeling	
			3.1.3.3	Specialty Engineering Modeling	
Solution		-	3.1.3.4	Environmental Modeling	
Space Models			3.2	Capabilities <	H
			3.3 3.4	Specialty Engineering	Ľ
			4.5	Environmental -	_
			4	Verification	
			5 6	Packaging and Shipping Notes	

Building Universal Specifications

VERSION 12.0

C JOG System Engineering

It Fits Into a Grander Structure

Model Convergence On the Road to Enterprise Architecting

Action Items For You as a System Engineer

- Continue your studies of requirements work
- Come to an understanding about UML and SysML
- Within your companies and programs develop modeling skills and work toward simplifying your combined set of models into a universal framework
- Work toward correlating the SW and HW development work patterns so as to encourage more effective integration
- Join INCOSE/NDIA working groups that deal with the issues covered in this tutorial and offer your ideas.

Tasks For a Development Organization

- Select a set of models for your UADF
- Train your people to apply those models to problem space
- Perfect inter-model traceability and integration skills as well as coordination of modeling and concept development work
- Insist on requirements being derived from models
- Apply a universal specification format
- Capture the work products that result from modeling work in a configuration manageable form
- Get on the tools treadmill