

- Requirement
- Preliminary Design Review (PDR)
- Engineering Evaluation (EEU) #2
- Critical Design Review (CDR)
- Flight Test Program
- MSST Profile
- Growth Opportunities

- MSST is system designed to represent a family of threat systems with an extremely wide variety of flight parameters and representations
 - A two-stage unmanned aerial target, launcher and associated support equipment
 - Subsonic bus stage followed by a supersonic sprint stage
 - Maximum range in excess of 100 NM
 - Minimum cruise altitude approximately 50 feet
 - Separation event at altitudes below 3000 feet
- MSST will provide unparalleled threat representation for developmental and operational testing of major DoD and international weapon systems

Multi-Stage Supersonic Target Requirement

- MSST is designed to emulate advanced two-stage Anti-Ship Cruise Missiles in support of Air Defense Weapons/Combat Systems T&E events for major acquisition programs
- Prime Contractor: Alliant Techsystems Inc. (ATK)
- Development effort will lead to follow-on contract for Low-Rate Initial Production and Full- Rate Production
- Initial Operational Capability planned for 2014
- ACAT IVM Program that directly impacts ACAT I Programs

Preliminary Design Review

A premier aerospace and defense company

- Completed 2nd Quarter 2010
- Due to impending Pre-CDR flight test in November 2010, the maturity of both the hardware and software designs were well ahead of most programs at the PDR stage
- Rocket motor technology was adapted from a well proven VLA design
- The bus system was adapted from the well proven BQM-167x design used by Composite Engineering Inc (CEi)
- Successful passing of the PDR was accomplished by closing some RFAs required for CDR and within 90 days of PDR conclusion

Prototype MSST Vehicle for PDR

Engineering Evaluation Unit #2

- A risk-reduction Engineering Evaluation Unit (EEU) #2 flight is scheduled prior to the Critical Design Review (CDR)
- This flight test requires a significant amount of the required CDR design be completed prior to this flight.
- Fidelity of both hardware and software is well ahead of most programs due to this flight test (HW 95%, SW 85%)
- Flight test scheduled for 17 Nov 2010
- EEU#2 will significantly reduce the engineering development cycle following CDR

Critical Design Review

- Currently planned for 1st Quarter 2011
- 80% of critical Design will be completed by EEU#2 Flight Test
- Subsystem CDRs scheduled to be completed by the end of 2010
- With successful completion of EEU#2 risk-reduction flight, CDR is anticipated to go extremely well
- Scheduled closure of CDR is April 2011

Flight Test Program (FTP)

- FTP is scheduled to be initiated during the 1st quarter of 2012
- FTP consists of 6 flight tests scheduled to complete the design requirements matrix
- 7 EDM vehicles are scheduled to be deployed during FTP
- One flight test includes 2 units fired in close proximity of each other and at the same ship
- FTP scheduled to conclude in early 2013

A premier aerospace and defense company

ATK MSST Mission Sequence

Designed with Low Cost and **Efficient Target Representation** as the Priority

A premier aerospace and defense company

Launch Boost Phase

- Ground launched by dual Rocket Assisted Take Off (RATO) bottles providing ~ 26,000 lbs of total thrust
- RATOs separate from Integral Vehicle ~2.5 seconds after launch
- Autopilot stabilizes vehicle

MSST EEU2 on Launch Rail - 01 October 2010

MSST EEU2 on Launch Rail - 01 October 2010

A premier aerospace and defense company

Integral Vehicle Subsonic Cruise Phase

- After the Integral Vehicle is stabilized, waypoint guidance is initiated based on pre-programmed mission events
- A turbojet engine provides thrust for subsonic cruise up to Mach .8

Integral Vehicle Subsonic

Cruise Phase

A premier aerospace and defense company

Integral Vehicle Subsonic Cruise Phase Loiter Mode

 The System for Naval Target Control (SNTC) can be used to modify pre-programmed missions or takeover vehicle control

The SNTC operator can control the vehicle to avoid unforeseen obstacles and initiate the separation sequence

A premier aerospace and defense company

Separation Event Phase

Separation Event Phase

 The Integral Vehicle separates into the aft Bus and Sprint vehicles when the separation waypoint is achieved or separation is initiated by SNTC

A premier aerospace and defense company

Separation Event Phase Bus Falls Into Ocean

Separation Event
Phase

Separated Bus Falls
to the Ocean

 After separation, the aerodynamically unstable Bus tumbles and falls into the ocean

A premier aerospace and defense company

Terminal Supersonic Phase

Terminal Supersonic Phase

- The Sprint Vehicle ignites a solid rocket motor after separation and accelerates the vehicle up to Mach 3.5
- Waypoint guidance based on mission events controls the
 vehicle and initiates climbs, dives or maneuvers

A premier aerospace and defense company

Terminal Supersonic Phase Sprint Vehicle Maneuvers

Terminal Supersonic
Phase

G
Sprint
Vehicle
Maneuvers

- Vertical, horizontal or composite weave maneuvers are initiated based on the pre-programmed plan
- Altitude can be controlled to just above the mean wave height

Fly-By to Final Waypoint Phase

A premier aerospace and defense company

Fly-By to Final Waypoint Phase

 Terminal guidance performs a fly-by of the operating ship to within nominal offset objective location

MSST EEU2 on Launch Rail - 01 October 2010

01_L108898.pptx

MSST 50 PSI Separation Test.avi

MSST 70 PSI Separation Test.avi

MSST Growth Opportunities

- Introduction of MSST system to additional domestic and international markets
- Replace higher cost supersonic threat simulators with lower cost MSST
- Growth of MSST from the T&E requirement to a more robust operational target
- The MSST program performance is projected to meet or exceed all U.S. Navy objective values
- ATK, working with the US Government, is planning to make MSST available for export on a case by case basis
- International customer requirements align with the US Navy
- Specific customer requirements can be incorporated into the MSST flight profile
- Additional MSST quantities favor follow on customers
 - > Reduced Risk
 - > In production pricing
- Expansion of launch locations beyond Pt. Mugu
 - Better serves DoD & international customers

