Army Test and Evaluation Command

Incorporating DoE Analytic Techniques and Test-execution Lessons-Learned to increase Credibility of T&E NDIA Presentation on 2 March 2010

Nancy Dunn, DA Civilian

Analysis Division, US Army Evaluation Command

nancy.dunn@us.army.mil (410) 306-0454

Rick Kass, GaN Corporation

Contract Technical Support to -US Army Operational Test Command (USAOTC) rick.kass@us.army.mil

Distribution A: This presentation is unclassified, approved for public release, distribution unlimited, and is exempt from U.S export licensing and export approvals under the international traffic in Arms Army Proven Battle Ready Regulation (22 CFR 120 et seq)

(254) 286-5572

What is a Credible T&E?

To justify recommendationsneed "credible T&E"

Propose Two General Characteristics for "Credible T&E"

Robustness: -- "breadth"

<u>Robust T&E Strategy/Design</u>-- systematically assesses all important factors and conditions that could impact system performance across the full expected operational environment.

Rigor: -- "depth"

<u>Rigorous Test Event</u> – provides convincing evidence to support systemperformance conclusion by eliminating threats to test validity.

.... some overlap between techniques...

T&E Robustness -- Central Challenge

Factors	Conditions	
Time of Day	day, night	
Type of C2	voice, digital	
SUT Activity	stationary, move	
Threat Intensity	Hi, Iow	
Operational Environment	urban, rural	
Threat ECM	benign, ECM	

System Performance (MOE/MOP

- Percent of detections
- •Probability of kill
- •Message completion rate

•.....

T&E Primary Issue – What impact do operational factors and conditions have on system performance? (Under what conditions does the SUT meet requirements?)

1....given a SUT and outcome measure (MOE or MOP) of interest ...

2....and a large potential number of factors and conditions that could impact SUT performance...

3....what is the most <u>scientifically defensible</u> and <u>efficient</u> way to examine the largest number of factors and conditions with the fewest number of test trials.

Robustness – Shaping the T&E (1 of 5)

- 1. Define critical response variables (MOE/MOP)
 - missed distance & time-to-way-point
 - 2. Determine all factors that could affect response variables
 - 3. Determine levels of factors that can be implemented

...determine what conditions to test in which event....

- 4. Determine availability of assessment Events (Tests and M&S)
- 5. Determine Factors and Levels to be evaluated in each event

Factors	# of Levels	Conditions	DT-1	DT-2		LUT		EW	IOT Ph 1	IOT Ph 2	IOT Ph 3	M&S
System Under Test	2 2 Venders (A, B) 2 2 2 2			2	2	2	2	2				
Mission Type	2	Attack, Defense,	None	None		2		2	2	Attack	2	2
Terrain Type	2	Flat, Hill	2	2		2		2	2	2	2	2
Light Condition	2	Day, Night	2	2		2		2	2	2	2	2
Blue Echelon	4	BN, CO, PLT, SQD	individual	individual	S	CO		СО	PLT	SQD	BN	4
Network Load	2	High, Low	Low	2		2	I	ledium	2	Low	2	2
EW Environment	2	Benign, Jammed	Benign	Benign		Benign		2	Benign	Benign	Benign	Benign
IW Environment	2	Benign, Threat-CNO	Benign	Benign		Benign		Benign	Benign	Benign	2	Benign

Determine most efficient Design for each event

Robustness -- Shaping the T&E (2 of 5)

6. Determine most efficient Test Design for a particular event (1 of 3)

Limited User Test (LUT) Test Design Matrix

	Vendor	Mission	Net	Flat		Hilly			
how			Load	Day	Night	Day	Night		
	Δ	Attack	Lo						
			Hi						
much	A	Defend	Lo						
testing is		Delena	Hi						
enough?	В	Attack	Lo						
enough			Hi						
		Defend	Lo			to	exam	ine each	
			Hi		comb	oinati	ion on	ly once wo	buld
					1	take too r	32 tes nuch (st trials or too little	? /
Army Proven Battle Ready	/								5

6. Determine most efficient Test Design for a particular event (2 of 3)

If all combinations important, but can't do 32 trials (16 trials per Vendor)...

- •DWWDLT "Do what we did last time."
- •OFAT -- Examine "one factor at a time"
- Select worst-case combinations
- •Select most-likely combinations
- •Ask someone ask the "oldest evaluator/tester"

•Use DoE Factorial techniques

Robustness -- and Traditional DOE

Robust Test -- systematically assesses all important factors and conditions that could impact system performance

Design of Experiments (DoE) provides

....scientific credibility/justification test design

....explicit way to determine test sample size - how much testing is enough

....most efficient method to examine large number of conditions with fewest test trials

...test design now becomes a science...

...base on 100+ years of methodological development

...new computer DoE software allows Statistician to fit design to the experiment Factorial Designs and ANOVA are DOE. DOE was first developed and used in farm trials by Sir R. A. Fisher (1925), a mathematician and geneticist

From Greg Hutto's presentation to OTA Conference, Oct08

Robustness -- Shaping the T&E (4 of 5)

6. Determine most efficient Test Design for a particular event (3 of 3); based on

...desired resolution of factors (alias structure)

- ...power analysis requirements (sample size -- # of test trials)
- ...available time/resources to execute # of trials

Army Proven

Battle Ready

Robustness -- Lessons Learned thus far for DOE implementation in T&E Planning

T&E Strategy and Design

•Requires good understanding of DoE to examine alternative designs

•Are all critical factors considered?

•Balancing act between resources and sufficient sample size

Post-test Data Production

•Need quick-look results capability on test site

•Too late to understand why anomalies/trends occurred after everyone goes home

•Need to associate trial conditions (factors/levels) with response variables

Test Planning & Execution

...now that we have a <u>Robust</u> T&E Strategy and Design...

...how do we ensure we will have a valid test execution and valid data to analyze?

Rigor: -- depth

Rigorous <u>Test Planning & Execution</u> – provides convincing evidence to support system-performance conclusion by eliminating or reducing threats to test validity.

Requirement	Evidence for Validity	Threat to Validity
ability to <u>employ</u> treatment (test system and planned factors)	Treatment successfully implemented	System and test architecture did not work
2 ability to <u>detect change</u> in response (MOE/MOP)	<u>Response changed as</u> Treatment changed	Too much noise, can not detect any change
3 ability to <u>isolate</u> reason for change	<u>Treatment</u> alone <u>caused</u> Response	Alternate explanations of change available
4 ability to <u>relate</u> results to actual operations	Response magnitude is <u>expected in actual</u> <u>operations</u>	Observed change may not be applicable
Army Proven Battle Ready	1	10

Test Rigor

-- 5 Test Components to Consider

Test Rigor -- 21 Threats to Test Validity

Test Rigor –

Guidelines for Designing Test Execution

... by eliminating threats to meet 4 Validity Requirements

Internal Validity -- "Ability to...

- 1. ... Employ Test System in Planned Conditions
- 2. ... Detect Change in Response MOE/MOP
- 3. ... Isolate Reason for Change in Response

External Validity -- "Ability to...

4. ...Relate Test Results to Military Operations

Rigorous test – provides evidence to support system-performance conclusion by eliminating or reducing threats to test validity

1. Ability to Employ Test System

in Planned Conditions

Most consistent "lessons learned" reported

after test completed:

•New System did not function as designed.

• <u>Players did not know how to employ</u> it properly.

•<u>Response Measures</u> (instrumentation) <u>not sensitive</u> to its use.

•<u>Trial Conditions not adequately implemented</u> to impact system employment

	reats	PRI	EVENTION examples
Treatment			, i
1. System functionalit	y does not wor Docuiroo f	ull up Dilot Test with	of capability Materiel Readiness
Does the HW/S	W work? Requires i	un-up rhot-rest with	tement.
	/ adequate tim	e prior to Record Trials.	•
Unit			
2 Players not adequat	tely prepara		
2. Fluyers hor adequal	the training and to examin	a results and implement	training, TTP, and sufficient
Do the players have			aining Readiness Statement
		fixes	· · · ·
Effect			
3. Measures insensitiv	e to system impact	SMEs and data	collectors ability to "see" differences
Is the response varia	phile consisting to anotom use?		Prtification
	1	est Rigor –	
Trial Conditions		oot nige.	
1 Eastern and Canditi	Ensuring that the system-und	er-test is used and can make	a difference
4. Factors and condition	Ensuring that the system and	er test is <u>used and can make (</u>	and monitor
test conditions sufficient to in	is the first loo	ical step in designing a valid tes	t. E
Army Provon			
			14
Battle Red	lay		14

Rigorous test – provides evidence to support system-performance conclusion by eliminating or reducing threats to test validity

ALEC 2. Ability to Detect Change in Response

Given that System and Test Factors are adequately employed

•Next Question: Did Response change when Test Factors were changed?

Two Groups of Threats to Detecting Change

Fail to Detect Real Change

•Incorrectly see <u>no covariation</u> (Type II Error, Producer Risk, Beta Error) Incorrectly Detect Change--

•Incorrectly see <u>covariation</u> (Type I Error, Consumer Risk, Alpha Error)

2. Ability to Detect Change-- statistical validity

Test Rigor –

PREVENTION examples

Army Proven

Battle Ready

Test Rigor –

Guidelines for Designing Test Execution

... by eliminating threats to meet 4 Validity Requirements

Internal Validity -- "Ability to...

- 1. ... Employ Test System in Planned Conditions
- 2. ... Detect Change in Response MOE/MOP

3. ... Isolate Reason for Change in Response

External Validity -- "Ability to...

4. ...Relate Test Results to Military Operations

Rigorous test – provides evidence to support system-performance conclusion by eliminating or reducing threats to test validity

	Four Test Vr dity Requirements								
Five Test Components	1. Ability to Employ System and Test Factors	2. Ability to Detect Change	3. Ability Reason fo Single Group	4. Ability to Relate Test Results to Operations					
1. Treatment	(1) System functionality does not work.	(5) System functionality varies in performance.	11) System unctionality changes across trials.	NA	(18) System functionality does not represent future capability.				
2. Players	(2) Players are not adequately prepared.	(6) Test players vary in proficiency.	(12) Player proficiency changes across trials.	(15) Groups differ in player proficiency.	(19) Players do not represent operational unit.				
3. Effect	(3) Measures are insensitive to capability impact.	(7) Data collection accuracy is inconsistent.	13) Data ollection ccuracy changes a tross trials.	(16) Data collection accuracy differs for each group.	(20) Measures do notreflect important effects.				
4. Trial	(4) Factors & conditions not adequately implemented	(8) Trial conditions fluctuate.	(1.) Trial coi ditions change acress trials.	(17) Groups operate under different trial conditions.	(21) Scenario is not realistic.				
5. Analysis		(9) Low statistical power (10) Statistical assumptions		\checkmark					

Battle Ready

3. Isolating the Reason for Change

•Given that System and Test Factors are adequately employed

•Given that Response change when Test Factors were changed?

•Next Question: What really produced change in Response MOE/MOP?

Validity -- <u>Treatment alone</u> caused change in Response

Threat -- Something else caused change in Response -- **confounded results**

-- Threat depends on type of experimental design

3. Isolating the Reason for Change In SINGLE-GROUP DESIGNS

Sequence of trial presentation is critical consideration

3. Isolating the Reason for Change

SINGLE-GROUP DESIGN ORDER EFFECTS

Order effect impacts all 4 components of test execution

Implementation of factors levels or controlled and uncontrolled trial conditions (weather, OPFOR) improve or degrade over time

Train OPFOR to maximum performance prior to start
 Randomize or counterbalance trials

Army Proven

Battle Ready

Previous Order-Effect threats are neutralized

3. Isolating the Reason for Change

Multiple-Group Designs - "unintended difference"

if same sequence given to both groups, and Unit C with Future B₁ • all comparisons are between groups Unit D with Current 1 **B**₂ (Compare Unit C with current systems to Unit D with future systems) While Multiple-Group designs alleviate Order-Effect threats ... for between-group comparisons... A new set of threats arises... ...because different treatments are intertwined with different groups ...difficult to separate treatment effects from group effects (confounding) PREVENTION examples Threats Use randomization or matching. Player Groups differ in Proficiency 15. Unit Report similarities and differences. Initial group differences Use no-treatment control group. •Design group differences Multiple-group design validity alyze data with/without outliers. Motivational differences on flow between group. is enhanced Effect 16. Data Collection Group Different instrumentas unintended differences t-trial comparability. ors between groups. between treatments are **controlled** Trial 17. Player Groups operate under an Use simultaneous presentation when possible. **Conditions** Different OPFOR tactics or environmental conditions Measure trial conditions for comparability.

Target A

Target B

Army Proven

Battle Ready

Test Rigor –

Guidelines for Designing Test Execution

... by eliminating threats to meet 4 Validity Requirements

Internal Validity -- "Ability to...

- 1....Employ Test System in Planned Conditions
- 2. ... Detect Change in Response MOE/MOP
- 3. ... Isolate Reason for Change in Response

External Validity -- "Ability to...

4. ...Relate Test Results to Military Operations

Rigorous test – provides evidence to support system-performance conclusion by eliminating or reducing threats to test validity

4. Ability to Relate Test Results to Actual Operations

•Given that System and Test Factors are adequately employed

•Given that Response change when Test Factors were changed?

•Given that the Treatment alone probably produced change in the Response

Next Question: Are these test findings related to actual operations?

Threat - - magnitude of System Effectiveness in the Test may <u>not</u> be effectiveness in actual operations

Treatment

Threats

18.System Functionality does not represent futureUnitcapabilityNot functionally representative

19. Players do not represent operational

- Level of training –under-trained or over-trained (golden crew)
- Nonrepresentative players.

Effect

20. Measures do not repres

- Use of SME instead of
 Observer opinion vs
- Inadequate data source Single data collector
- Trial
- Qualitative measures only

21. Unrealistic scenario

- Blue operations inappropriate
- Threat unrealistic
- Unrealistic setting
- Player familiarity with scenario

Army Proven Battle Ready

Realism in ...

-System Functionality,
- ...Test Players,
- ... Response Measures,
-Trial Scenario & Execution

ctual end users. oeriment "practice time." ined" units

hission effect (lasers,

lectors. elated quantitative measures

....key to Operational Validity

Combat developer accreditation
 Provide adaptive independent accredited threat
 Provide appropriate civilian and military background
 Adaptive "free play" threat enhances scenario setting and uncertainty

PREVENTION examples

Ensure functionality of experimental "surrogate" capability is present.

Test Event Rigor – Summary

If as a Result of Test Execution -- the following is demonstrated

- •System & test conditions successfully employed
- •<u>Response variable changed</u> as factors and conditions changed
- •Change in factors and conditions alone caused change in Response Variable
- •System performance occurred under operationally relevant conditions

Then, there is **convincing Evidence** that the **test produced Valid**

<u>conditions & data</u> for DoE analysis.

Summary Designing Credible T&E

Doing the right thing....

Design a <u>Robust</u> T&E Strategy to address the appropriate problem space efficiently

Identify all factors/conditions that could affect system performance

•Distribute across available evaluation events (DT, OT, M&S)

•Design each individual event – using formal DOE techniques

Design a <u>Rigorous</u> Test to produce valid evidence

•<u>Design execution of test to</u>

... meet the 4 Test Validity Requirements

... by reducing/controlling the **21 Threats to Validity**

Doing the <u>thing right</u>....