

Validating M&S with T&E Data: Pitfalls, Problems and Possible Solutions

And one example...

NDIA T&E Conference 3 Mar 2010

David H. Hall SURVICE Engineering Company Ridgecrest, CA

- Background
- Pitfalls & Problems
- Potential Solutions
- An Example

Background

- M&S in T&E: Cost Savings or Cost Burden?
 - M&S use touted as "saving money in T&E"
 - But often it seems to just cost more money
- Validation often the sticking point
 - How to demonstrate that M&S are "good enough"?
 - Validation data often are either not collected, not adequate, or not accurate
- OUSD funded SMART Project developed costeffective VV&A approach
 - Including modelers' involvement in planning T&E events to support M&S validation
 - "Generic M&S Validation Test Plans"

Perceived Pitfalls & Problems

• Validation is "too hard"

ENGINEERING COMPAN'

- Takes too long, costs too much, no useful product
- Don't know when to stop
 - What's "good enough?
- Statistics often don't tell you much
 - What does a "statistically significant difference" really mean?
- Can't get enough validation data to cover domain of interest
 - Can't run enough tests, can't get the data you need
- Validation not recognized as a process
 - It's not a one-time event
- Can't get good range data
 - Instrumentation not designed for M&S validation requirements

Potential Solutions

- Validation is "too hard"
 - Don't focus on the wrong things
 - Design validation program around intended uses of M&S
 - » Focus on parameters and outputs of greatest impact and interest
 - Include BOTH functional and end-to-end validation events
 - » End-to-end validation focuses on outputs of greatest interest
 - » Functional validation focuses on parameters of greatest impact
 - » Sensitivity Analyses support both
- Don't know when to stop
 - What's "good enough?"
- Statistics often don't tell you much
 - Statistical significance vs. "analytical significance"
- Can't get enough validation data to cover domain of interest
 - Costs too much, takes too long, can't get the data you need
- Validation not recognized as a process
 - It's not a one-time event
- Can't get good range data
 - Instrumentation not designed for M&S validation requirements

Potential Solutions

- Validation is too hard
- Don't know when to stop
 - "Good enough" is only determined by how you're planning on using M&S output
- Statistics often don't tell you much
 - Statistical significance vs. "analytical significance"
- Can't get enough validation data to cover domain of interest
 - Costs too much, takes too long, can't get the data you need
- Validation not recognized as a process
 - It's not a one-time event
- Can't get good range data
 - Instrumentation not designed for M&S validation requirements

- Validation is the degree to which simulation outputs match the "real world"
 - "Good enough" is determined by how the simulation will be used
 - » Only way to guarantee you'll know when to quit doing validation is to focus on what you need from the model
 - Sensitivity Analyses are extremely helpful in determining what's good enough
- Validation always comes down to a comparison between simulation predictions and some representation of the "real world"
 - As adjudicated by experts in the application, the subject matter area, and the test data

Is this Good Enough?

ENGINEERING COMPANY

Antenna Pattern	Mean (m)	s (m)	Normalized Mean Difference	% Change
Omni-directional (baseline)	25.26	338	-	-
(sin X)/X	30.67	4.00	005	9.67

Potential Solutions

- Validation is too hard
- Don't know when to stop
- Statistics often don't tell you much
 - Just because two sets of data show a statistical difference may not mean the difference is significant to your application
 - Ask not whether a difference is statistically significant, but ask rather whether it's "analytically significant"
- Can't get enough validation data to cover domain of interest
 - Costs too much, takes too long, can't get the data you need
- Validation not recognized as a process
 - It's not a one-time event
- Can't get good range data
 - Instrumentation not designed for M&S validation requirements

Two Measured Miss Distributions for the Same Missile System

Potential Solutions

- Validation is too hard
- Don't know when to stop
- Statistics often don't tell you much
- Can't get enough validation data to cover domain of interest
 - Concentrate on intended uses to focus validation data collection
 - » What are key questions to be answered with M&S outputs?
 - » What parameters drive those outputs?
 - » Sensitivity analyses
 - Share costs across programs
 - Recognize benefits and limitations of all three validation processes:
 - » Benchmarking
 - » Face validation
 - » Results validation
- Validation not recognized as a process
 - It's not a one-time event
- Can't get good range data
 - Instrumentation not designed for M&S validation requirements

Three Validation Techniques

- <u>Benchmarking</u>: Comparison of M&S outputs with outputs of another M&S that is accepted as a "standard"
 - Benefit of easy and cost-effective comparison matrix
 - Limited by acceptability of benchmark simulation
- <u>Face Validation</u>: Comparison of M&S design and outputs (under welldefined conditions) with the expectations and opinions of SME in the area of interest
 - Benefit of wide expertise in the subject matter area, community acceptance
 - Limited by choices of SME, data for them to evaluate
- <u>Results Validation</u>: Comparison of M&S outputs with the results of test measurements made under identical conditions as M&S inputs
 - Benefit of actual real-world test results
 - Limited by instrumentation assets, range assets, cost, schedule, etc.

In combination, these three can help to cover the waterfront of interest

Potential Solutions

- Validation is too hard
- Don't know when to stop
- Statistics often don't tell you much
- Can't get enough validation data to cover domain of interest
- Validation not recognized as a process
 - Validation is a gradual process of "shining light" on the capabilities of the model
 - Validation is never done, just done enough...
 - Accreditation is the "one-time event"
- Can't get good range data
 - Instrumentation not designed for M&S validation requirements

The Essence of Accreditation

ENGINEERING COMPANY

TO PROVE THE M&S IS SUITABLE FOR THE NEED

REQUIRES AN <u>OBJECTIVE COMPARISON</u> OF M&S REQUIREMENTS WITH M&S INFORMATION WITHIN THE CONTEXT OF THE PROBLEM

Potential Solutions

- Validation is too hard
- Don't know when to stop
- Statistics often don't tell you much
- Can't get enough validation data to cover domain of interest
- Validation not recognized as a process

• Can't get good range data

- Involve modelers up front
- Sensitivity analyses drive data requirements
- Notional Test plans/standardized test plans & reports
- Calibrate test articles (especially threat systems)

Developed by modelers to identify potential test procedures for validation

1. Discussion

2. Notional Test Procedure

- 1. ECM Conditions (VGPO, RGPO, Inverse Gain, etc.)
- 2. Radar Conditions (track-while-scan, conscan, monopulse, etc.)
- 3. Target Conditions (RCS, flight path, etc.)

3. Data/Accuracy Requirements (Data to be recorded)

- 1. Calibration Requirements
- 2. Jammer Signal Level & waveform (time, modulation, frequency, phase)
- 3. Target Signal Level
- 4. True target position and attitude
- 5. Perceived target position and attitude
- 6. AGC time-varying voltage
- 7. Track error detector time-varying voltage

4. Data Processing Requirements

Radar Model Notional Test Plan

Notional Flight Paths

Example: Validating Missile Proximity Fuze Models

- Sensitivity Analyses help determine validation data accuracy requirements
 - And identify drivers based on model intended use
- "Model-Test-Model" approach helps set up test conditions
 - And evaluate test results

Typical Surface-to-Air Missile Engagement

Endgame Parameters Affecting Pk

• Primary parameters

- Intercept geometry parameters
 - » Miss distance, direction
 - » Vm, Vt
 - » Approach angles
 - » Angles of attack
- Fuze declaration position [on Vmt]
- Target Vulnerability
- Secondary parameters
 - Fuze parameters: detection thresholds, etc.
 - Warhead parameters: ejection angle, etc.
 - Fault trees: redundancies, etc.

Fuze Determines Burst Point

ENGINEERING COMPANY

How Good Does the Fuze Model Need to Be? What Drives Pk the Most?

- Sensitivity Analysis Can Support the answers:
 - Determine Effect on Pk Caused by Errors in Inputs to the Endgame
 - Compare results to Pk accuracy requirements for specific applications
 - Example: Net Reduction in Lethality (NRL) for ECM

$$NRL = 1 - \frac{Pk(wet)}{Pk(dry)}$$

Sensitivity Analysis Results

Primary Drivers of Pk (in order):

- 1. Fuzing (Burst Position)
- 2. Miss Distance
- 3. Az
- 4. El
- 5. Yaw
- 6. Pitch

Relative importance depends on specific intercept conditions, type of missile and type of target

- It Is Impossible to Know the Validity of Simulated Pk Without Knowing the Validity of the Fuze Model
 - Errors in fuzing prediction can change the predicted Pk from zero to one or vice versa

INTERVAL IN WHICH FUZING MUST OCCUR IN ORDER TO ACHIEVE A SPECIFIED ACCURACY

Figure I-2. P(K) Profile Along Vmt

Figure I-3A. Interval in Which Fuzing Must Occur (on Vmt) To Achieve a Specified P(K/F) Accuracy

Missile Engagement Simulation Arena (MESA)

- Unique Facility for Evaluation of Missile Proximity Fuzes Against Full Scale Targets
- Effects of Near Field Signatures (Aircraft or Missile) on Threat Missile Fuze Performance
 - Realistic Encounter Simulations Provide:
 - Fuze Performance (Pd)
 - Warhead Burst Point
 - Countermeasures Effects
 - Overall Missile Performance
 - Effectiveness Analysis Support
 - M&S Validation Data
 - Linked with Missile SIMLAB

Mobile High & Low Fuze Carts Support Proximity Simulation

Example MESA Measurements vs. GTD* Model "Crayola" Target

ENGINEERING COMPANY

*Geometrical Theory of Diffraction

Fuze Model Validation

Summary

- Validation can be hard, but doesn't have to be "too hard"
 - Design M&S validation program around intended uses
- Figure out when to stop before you start
 - Use sensitivity analyses to help determine accuracy requirements
- Use statistical techniques where they make sense
 - Often the best use is to evaluate adequacy of collected test data
- Cover the domain of interest
 - Use SME review of sensitivity analyses, available test data and benchmarking against accepted M&S to expand scope of range data collection
- Recognize that validation is really a never-ending process
 - Just stop when you can get off the validation ride with a supportable accreditation decision
- Maximize the quality of your range data
 - Design test data collection plan around M&S validation requirements

Contact Info

Dave Hall SURVICE Engineering Company (760) 446-2424 (760) 382-1618 (cell) dave.hall@survice.com