SOME OPERATIONAL RESEARCH ISSUES IN SYSTEM TESTING

Donald P. Gaver

Distinguished Professor of Operations Research, Emeritus

Naval Postgraduate School

dgaver@nps.edu

Patricia A. Jacobs Professor of Operations Research Naval Postgraduate School pajacobs@nps.edu

Definition

Operations/Operational Research applies quantitative scientific methods to assist & enhance decision making

TESTING INPUTS

- ARRIVAL TRAFFIC TYPES
 - SLOWLY TIME-VARIABLE WITHIN DAYS
 - BETWEEN DAY VARIATION
 - SURGES/ "BUNCH ARRIVALS"
 - PRIORITIES
- SERVERS and SERVICE
 - DATA & APPS: CAPACITY (BYTES), PARALLEL?
 - SERVICE TIMES
 - SECURITY
 - DEADLINES/TIMEOUTS (RANDOM)
 - HIERARCHY
- CONGESTION/LOADING
 - QUEUE MANAGEMENT/CONTROL
 - "INITIAL LOADING" BEFORE TEST

SUMMARY OF APPROACH

 PROBLEM: DESIGN ADAPTIVE COST-EFFECTIVE "CLOUD/SOA" COMPUTER (SERVER & DATA-STORAGE & SECURE) SYSTEM

– LINK LEGACIES

- IMPORTANCE: GROWING DATA ACQUISITION FOR TIMELY DECISIONS:
 - OWN ASSETS
 - OPPONENTS'
 - NEUTRALS (AVOID)
- INEFFICIENT COST & PERFORMANCE UNLESS PRE-PLANNED & TESTED

"BEST" SOLUTION: PRE-MODEL & ANALYSIS

- DEVELOPMENT (ENGINEERING) TEST (DT)
- SUCCESS/INTERIM FAILURE, REPLAY...
 - VIA TEST & EVALUATION (OT&E)
 - MONITOR FIELD EXPERIENCE
 - MODIFY DESIGN (RAM-C & ...)

FOCUS:

- Sizing & Adapting
- Scheduling & Operating
- Sustaining & Restoring Service (RAM-C)

OF

(GENERIC SERVICE-ORIENTED) ARCHITECTURE

EXAMPLE:

NETWORK CENTRIC ENTERPRISE SERVICES (NCES)

Network Centric Enterprise Services (NCES)

SERVICE-ORIENTED ARCHITECTURE: MINI-CLOUD HIERARCHY

BD: DATA SEARCH, DC: INF. TRANSF, CB: ACK
EF: ORDER/ALERT, FG-FH-FI: BROADCAST TO MINICLOUD
MK: QUERY, KEK: HIGH-LEVEL-RETURN, KM: ACK, ML-LJ: DISTRIBUTE

PROCESS FLOW

Quality of Service (QoS) Issues

- Latency/Delay to Users
- Quality/Accuracy
- Security Quality, Burden to Timeliness
- Cost/Agility/Survivability-Reliability of Infrastructure
- Near Instability/Saturation → Deadline Elapse
 IMPLIES

Quantitative Performance Analysis Required

MATH. MODEL

- ARRIVALS/SERVICE TYPE DEMANDS: j=1,2,...,J
- ARRIVALS/SERVICE REQUESTS

 POISSON, LEVY-KHINCHINE PROCESS:
 RANDOM, RATE: λ_j(t), j=1,2,...,J
- SERVICE/COMPUTER STORAGE & TIME
 - STORAGE: C_i (mbytes, flops)
 - SERVICE TIME: **S**_j (x secs)
 - SERVICE RATE: $\dot{\mu_j}(t)$

RANDOM

- VARIABLES (INDEPENDENT)
- DEADLINES/DEFECTION TIMES
 - REQUEST SPOILAGE RATE: $\delta_j(t)$
- QUEUE-SERVER:
 - RETRY RATE: $\xi_j(t)$

FLUID MODEL, I (SIMPLEST)

 $s_j[t] = \# TYPE j TASKS IN SERVICE (BY SINGLE COMPUTER)$ $q_{j}(t) = \# TYPE j TASKS IN QUEUE (VIRTUAL)$ $\varphi_j(t)$ =PROB. TYPE *j* TASK ENTERS SERVICE (BY CLOUD) j=1,2,...,J

$$\frac{ds_{j}(t)}{dt} = \underbrace{\lambda_{j}\varphi_{j}}_{t}$$

and begins service

 $= \underbrace{\lambda_j \varphi_j(t)}_{\text{Type j}} - \underbrace{\left(\mu_j + \delta_j\right) s_j(t)}_{\text{Type j task in service}} + \underbrace{\xi_j \varphi_j(t) q_j(t)}_{\text{Type j task in queue}} + \underbrace{\xi_j \varphi_j(t) q_j(t)}_{\text{retries and here}}$

retries and begins service

either completes

deadline expires

service or its

service, goes into queue

 $\frac{dq_{j}(t)}{dt} = \underbrace{\lambda_{j}\overline{\varphi_{j}}(t)}_{\text{Type j task arrives, is blocked from beginning service groes}} - \underbrace{\left[\delta_{j} + \xi_{j}\varphi_{j}(t)\right]q_{j}(t)}_{\text{Type j task in queue either retries and begins service or its deadline expires}}$

Fluid Model & Simulation Results I: Model I

$\lambda_i = 1; C_1 = 1; C_2 = 5; \overline{C} = 1$	$00; \frac{1}{2} = 1$	$10; \frac{1}{10} = 1$	$20; \frac{1}{2} = 1$	$10\frac{C_1}{=}:=2$	$0 \frac{C_2}{=} : \frac{1}{=} =$	$20; \frac{1}{20} = 40$
l , 1 , 2 ,	μ_1	μ_2	ξ_1	$C \xi_2$	$C \delta_1$	δ_2

	Average	Average	Average	Average	Fraction	Fraction
	of of		of	of	of tasks	of tasks
	number	number	number	number	of type 1	of type 2
	of type 1	of type 2	of type 1	of type 2	lost	lost
	tasks	tasks	tasks in	tasks in		
	present at	present at	queue	queue		
	arrival	arrival	present at	present at		
	times	times	arrival	arrival		
			times	times		
Simulation	6.72	13.2	0.04	0.25	0.33	0.33
	(0.03)	(0.13)	(0.008)	(0.03)	(0.002)	(0.001)
Fluid	6.6	12.5	0.23	2.6	0.34	0.38

Fluid & Simulation Results II Model I

$\lambda = 2.5; C = 1; C_{2} = 5; \overline{C} = 1$	$00:\frac{1}{1}=$	$10 \frac{1}{10} =$	$20 \frac{1}{20} =$	$10\frac{C_1}{1} \cdot \frac{1}{1} = 1$	$10\frac{C_2}{10} \cdot \frac{1}{10} = 1$	$30 \frac{1}{2} = 60$
<u>1</u>	"" <i>म</i>	μ_2	<u>ج</u> , چ	$\bar{C}'\xi_2$	$\bar{C}'\delta_1$	δ_1, δ_2

	Average	erage Average		Average Average		Fraction
	of numberof numberof type 1of type 2		of number	of number	of tasks of	of tasks of
			of type 1	of type 2	type 1 lost	type 2 lost
	tasks	tasks	tasks in	tasks in		
	being	being	queue at	queue at		
	served at	served at	the arrival	the arrival		
	the arrival	the arrival	times	times		
	times	times				
Simulation	17.35	16.44	5.43	82.9	0.31	0.66
	(0.12)	(0.02)	(0.09)	(0.91)	(0.003)	(0.003)
Fluid	17.9	15.2	4.4	89.4	0.30	0.70

FLUID MODEL, III PROCESSOR-SHARED COMPUTING

Large Computers are Faster =Fewer Losses

	# of	Total	Arrival	Proba-	Frac-	Frac-	Frac-
	com-	capa-	rate of	bility	tion of	tion of	tion of
	puters	city of	tasks	arriving	tasks of	tasks of	tasks
	in cloud	one	per	task is	type 1	type 2	that are
		com-	com-	of type	that are	that are	lost
		puter	puter	1	lost	lost	
"FCFS"	100	10 ²	2×10^{3}	0.25	0.99	0.99	0.99
"FCFS"	1	104	2×10 ⁵	0.25	0.70	0.51	0.56
PS	100	102	2×10^{3}	0.25	0.16	0.37	0.32
PS	1	104	2×10 ⁵	0.25	0.12	0.06	0.08

TWO LEVELS OF SERVICE

TESTING FOR SYSTEM RELIABILITY GROWTH

- RELIABILITY GROWTH=
 - DESIGN FAULT REMOVAL, MITIGATION
- APPROACH
 - (A) TEST GROUPS OF SUBSYTEMS ("WITHIN")
 - (B) ASSEMBLED GROUPS ("BETWEEN")
- (A)+(B) UNDER TOTAL BUDGET CONSTRAINT, C

ANALYSIS APPROACH

- (1) SPLIT SUBSYSTEMS INTO "NATURAL" SUBGROUPS (EACH PLATF. IN SQUADRON, PROPULSION, NAVIGATION, STEERING, ETC)
- (2) s_i=NBR ELEMENTS, SUBGROUP i
- (3) $s_i + (s_i(s_i-1)/2) = NBR. INDIV. + PAIRW. TESTS$
 - (FIRST/SINGLE) TOTAL TESTS of i
- (4) c_i=COST/TEST SUBGROUP i
- (5) TOTAL COST SUBGROUP $i=[s_ic_{1i}+(s_i(s_i-1)/2)c_{2i}]$ (6) TOTAL COST, ONE TEST $=\sum_i [s_ic_{1i}+(s_i(s_i-1)/2)c_{2i}]$

RESULT

 $\sum \left| s_i \theta c_{1i} + \frac{s_i^2 \theta^2}{2} c_{2i} \right| - \tilde{C} = 0$

