
Slide 0Slide 0

Performance Engineering Initiatives for Early
Software Test of High Availability Systems

Ed Beck
Sr. Manager

NDIA Test & Evaluation Conference
March 1-4, 2010

Slide 1Slide 1

Mission Solutions Engineering, LLC

• Mission Solutions Engineering (MSE) is a full service systems and
software engineering provider with 40 years’ experience in
delivering mission systems.

• Formed by CSC to address government concerns for potential OCI,
MSE comprises CSC’s former systems and software engineering
support to the US Navy and Missile Defense Agency, primarily
operating out of Moorestown, New Jersey and with headquarters in
Arlington, Virginia.

• The core of our engineering activities is the design, development
and integration of mission-critical software. We have been rated at
Capability Maturity Model Integration1 Level 5 for software
engineering (SW-CMMI®) since 2001 and systems engineering (SE-
CMMI®) since 2004.

Overview

Slide 2Slide 2

Overview

Aegis Weapon System • The world’s most advanced
shipboard Anti-Air Warfare
(AAW) Weapons System

• A highly integrated Combat
System capable of Multi-
Mission warfare
• Air, Surface and

Subsurface

• Open Architecture migration
provides foundation for the
modernization effort and
future war fighting
capabilities

U.S. Navy Photo

Slide 3Slide 3

Overview

• Performance Engineering (PE), Integration & Test

• Catalyst for PE Initiatives

• Performance Engineering Framework

• Summary

U.S. Navy Photo

Slide 4Slide 4

What is Performance Engineering?

• Performance Engineering is an emerging Computer Science
practice comprised of the following functions:
– Capacity Planning

– Projection of future resource needs based on historical data and
growth projections

– Performance Measurements
– Demonstrating that the system meets performance criteria

– Performance Analysis
– Characterizing software behavior and identifying anomalies

• In practice, as we have defined it at MSE, Performance
Engineering is the process by which software is tested and tuned
with the intent of realizing the required performance.
– Viewed at MSE as an integral function within the Test & Evaluation (T&E)

Discipline

Slide 5Slide 5

What is Systems Integration & Test?

• Systems Integration & Test is the ability to verify and validate the
interfaces, functions and performance of two or more computer
programs on the target hardware suite and operating
environment.

• Multiple Integration & Test levels:
– Unit

– Verifies functionality of specific sections of code
– Integration

– Verifies the interfaces and interactions of components against a
specific design

– System
– Verifies the system performs intended functions and integrates with

external or 3rd party interfaces
– Requirements

– Verifies that a completely integrated systems meets requirements
– Acceptance

– Validates the system meets customer needs

Slide 6Slide 6

System Integration
Testing

Computer Program
Definition & Design

Computer Program
Implementation

System Definition
& Design

Computer Program
Testing

Code

Unit Test

Element CP
Integration & Test

Operational
Tests

System Demo &
System Qual Test

System T&E,
MEIT

Engineering
Test & Evaluation

Comp Program
Detailed Design

Computer
Program Design

CP Performance
Reqts Definition

Operational
Reqts Definition

System
Reqts Definition

Element
Reqts Definition

Early I &T, PE
Activities

Multiple Testing Levels

Test Phases
Unit

Integration
System

Requirements
Acceptance

Systems
Integration,

Test and
Performance
Measurement

Initial Test and
Performance
Measurement

Software Development Process

Slide 7Slide 7

Early Integration, Test & Performance Engineering

• Software testing efforts account for a large part of the software
development costs
– The earlier a defect is found, the cheaper it is to fix

• Incorporating Performance Engineering initiatives in Early
Integration & Test efforts results in:
– Better characterization of software and system performance levels
– Earlier detection of performance defects which yield lower remediation

costs
– Timely integration of 3rd party software solutions with better

operational performance

Slide 8Slide 8

Catalyst for Performance Engineering Initiatives

U.S. Navy Photos

Slide 9Slide 9

Proprietary Systems

Open Technology

Emphasis on COTS hardware
and software integration

Manufactured hardware and
developed software

A Migration to Open Architecture

Catalyst

C/C++

Conversion of legacy
software to new languages

Heterogeneous operating
environments

U.S. Navy Photo

http://java.com/�

Slide 10Slide 10

Open Technology

• An Aegis ship is not much different from a large-scale
commercial data center.

• The weapons system is composed of a heterogeneous
operating environment with unique components not seen in
commercial architectures.

Catalyst

Slide 11Slide 11

An Enterprise Computing Environment

GUNS System

Subsurface Systems

Sensors

Vertical Launch System

Networked Computer Systems

Radar System

Catalyst

U.S. Navy Photo

Slide 12Slide 12

Catalyst

Peripherals

Interface
Technology

Computing
Platforms /
Network

Operating
Systems

Middleware

Tactical
Applications

Transformation to Open Architecture – Numerous challenges with
integrating COTS technology for Real-Time High Availability
computing requirements

Peripherals

Interface
Technology

Computing
Platforms /

Network

Operating
Systems

Middleware

Tactical
Applications

COTS
Transition

UYK-7 / UYK-43
UYK-20 / UYK-44

UYH-3 (Mag Disk)
RD-358 (Mag Tape)

OL-267 (Data Terminal)

SPY, CND,
WCS/FCS,

ADS, ORTS, ACTS

FTWSM,
CIGARS

Custom NTDS
Custom Time-of-Day

Aegis Tactical
Executive System

http://www.ca.com/�
http://www.rti.com/index.html�
http://www.windriver.com/�
http://www.ibm.com/us/�
http://www.l-3com.com/�
http://www.symmetricom.com/index.aspx�
http://www.cisco.com/�

Slide 13Slide 13

Performance Engineering Framework

U.S. Navy Photo

Slide 14Slide 14

PE Framework

• Analysis of Software Vulnerabilities
– Static SW scans and run-time monitoring
– Cppcheck tool (Open Source Software) for SW scans

• Infrastructure Performance Measurements
– Cpu ,Memory, Network Interface utilization
– Collectd tool (Open Source Software)

• System/Software Profiling
– Process, function and code level graphical & textual reports
– Oprofile tool (Open Source Software)

• System-Level Technical Performance Measures (TPMs)
– Derived from A-spec requirements
– Data Extraction and Reduction

• Product-Area TPMs
– Derived from the B5 spec or assumed requirements
– Data Extraction and Reduction

• Predictive Engineering
– Analysis of planned effects of modifications to the system
– SW performance based on capacity changes

Performance Engineering Initiatives for Aegis Modernization

* Refer to appendix for tool origin

Slide 15Slide 15

PE Framework

• Off the shelf system management and performance analysis products are
commercially available, but they are:

– Targeted for commercial IT applications
– Not easily adaptable to address specific user requirements
– Highly complex solutions that require significant technical skills and training
– Not cost effective: high licensing fees, support and training costs

• Open Source Benefits:
– DoD acceptance of OSS

– Oct 16, 2009 DoD Memorandum for Secretaries of the Military Departments: Clarifying Guidance Regarding Open
Source Software (OSS)

– Lower cost ‘generic’ alternative to COTS products
– OSS available at all levels of the software stack
– Scalable, extensible components provide for innovative solutions

Extensive Use Of Open Source Technology

Slide 16Slide 16

PE Framework

Tool Description
Network
Analysis

CPU
Utilization

Memory
Utilization

Memory Leak
Detection

Software
Profiling

cppcheck
Performs static analysis of C/C++ source

code for software vulnerabilities X

valgrind

Performs run-time analysis of
executables for instances of memory

leaks X

collectd

Provides dynamic display of system and
application performance – cpu, memory
and network utilization. Historical data

is available for trend analysis. X X X X

ntop
Provides run-time data on network

utilization X

NightTune

Provides dynamic display of system and
application performance – cpu, memory
and network utilization. Historical data
can be correlated with NightTrace data-

set for TPM analysis X X X

NightTrace
Provides synchronized graphical or text

display of all system activity X
Data
Recording

Provides analysis of tactical run-time
extraction point data X

oprofile

System-wide profiler for Linux systems,
capable of profiling all running code at

low overhead X

wireshark
Provides run-time analysis of detailed

network packet information X

* Refer to appendix for tool origin

Toolset

Slide 17Slide 17

PE Framework

Tool Description
Network
Analysis

CPU
Utilization

Memory
Utilization

Memory Leak
Detection

Software
Profiling

cppcheck
Performs static analysis of C/C++ source

code for software vulnerabilities X

valgrind

Performs run-time analysis of
executables for instances of memory

leaks X

collectd

Provides dynamic display of system and
application performance – cpu, memory
and network utilization. Historical data

is available for trend analysis. X X X X

ntop
Provides run-time data on network

utilization X

NightTune

Provides dynamic display of system and
application performance – cpu, memory
and network utilization. Historical data
can be correlated with NightTrace data-

set for TPM analysis X X X

NightTrace
Provides synchronized graphical or text

display of all system activity X
Data
Recording

Provides analysis of tactical run-time
extraction point data X

oprofile

System-wide profiler for Linux systems,
capable of profiling all running code at

low overhead X

wireshark
Provides run-time analysis of detailed

network packet information X

* Refer to appendix for tool origin

Focus of Today’s Presentation

Slide 18Slide 18

PE Framework

• Cppcheck (sourceforge.net/projects/cppcheck)

– Source code analyzed for various
software vulnerabilities

– Report identifies specific lines of code
with potential issues

– Does not require software
modifications

– Benefits
• FOSS

• Noted issues are identified and resolved
prior to run-time testing

• Significant reduction in memory leak
stability issues during initial software
integration efforts

Category Description

Memory Leaks
The most basic example of a memory leak is when memory is dynamically
allocated but not de-allocated when a function terminates.

Resource leaks Occurs when an acquired resource cannot be released.

Array out of bounds
Occurs when accessing an element of an array using an index that is beyond
the size originally allocated for the array.

Buffer overruns Can occur when the destination of a copy is smaller than the source.

Memset on class

Memset is typically used as a convenient way to set all data members of a
class to zero. However, if the class contains any virtual functions, it is likely
that the C++ internal virtual pointer table will be overwritten causing the
virtual pointer to point to NULL.

Overlapping data
buffer

Can occur when specifying the same source and destination for a memory
operation

Missing virtual
destructors

In object oriented programming, and in this case C++, it is common to use
inheritance to define a “derived” class to extend a previously defined “base”
class. This derived class may then perform any valid C/C++ instructions,
including dynamically allocating memory in the constructor, and then
(hopefully) deleting the memory in the destructor. A problem can occur
because it is possible to delete/destroy the object using the destructor of the
base class. Doing this will not execute the destructor in the derived class and
therefore not delete the dynamically allocated memory which causes a leak.

Mismatching
alloc/dealloc

Using the “new” operator in C++, it is possible to dynamically allocate
memory for a pointer to a single object, and a pointer to an array of objects.
In both cases, the “delete” operator is used but the syntax differs between
the two types of allocations. In the case of the array, “delete” requires the
use of the square bracket operators for proper de-allocation to occur.

Division with signed &
unsigned
operators

The result of a division will be wrong if one operand is unsigned and the
other operand is negative.

Example Output:
FILE LINE# ERROR CATEGORY ERROR TYPE VARIABLE NAME
file1.cpp : 21 (error) memory leak : test
file2.cpp : 110 (error) resource leak : class::create
file10.cpp : 204 (error) overlapping data buffer : template

Slide 19Slide 19

PE Framework

• Collectd (collectd.org)

– Ability to monitor and analyze CPU,
memory and network utilization at the
system and element level

– Synchronized process-to-infrastructure
views

– Per-core and aggregate CPU statistics

– Non-intrusive capability available on-
demand

– Benefits
• FOSS

• Provides critical infrastructure TPM’s

• Allows detection and investigation of
anomalies early in the development cycle,
thus ensuring greater stability in later
deliveries

Per-Core Utilization

Node-Level Interrupts

Slide 20Slide 20

PE Framework

• NightTrace (Concurrent Computer Corporation)

– Deterministic debugging, monitoring,
tracing and tuning

– Ideal for time-critical applications

– Synchronized graphical or text display of
system and application activity

– Benefits
• Easy-to-use graphical user interface

• Provides user-defined event logging

• Customizable views

• Correlate kernel events with application
activity

NightStar Tool Suite

Concurrent Computer Corporation

Provides visibility of application timing issues at the Operating System level

Slide 21Slide 21

PE Framework

Cornerstones TPM Build x Build y

Availability CPU Utilization Normal

CPU Utilization Stress Not Tested Not Tested

Memory Utilization

Network Utilization

Initialization

Reaction Time Tracking Not Tested

AAW in Adverse Not Tested Not Tested

AAW in Clear Not Tested Not Tested

Display

Firepower Engagement Not Tested

Firing Rate Not Tested Not Tested

MAX** – AAW Not Tested Not Tested

MAX** – Multimission Not Tested Not Tested

Coverage Track Capacity Not Tested

• Data Recording (U.S. Navy - Aegis / LM / MSE)

– Utilizing extraction point data to
implement a TPM “report card” for
system and application timing and
capacity requirements,

– Extraction point data is recorded during
all test events

– Benefits
• Application instrumentation

• Ability to toggle EP recording on/off at
system consoles

• Used for timing & capacity measurements,
SW studies, and correlation of anomalies

Example TPM Report Card

Slide 22Slide 22

PE Framework

7 0.1288 : xx2=chid;
25 0.4602 : if(share_file)

: xx2=(long long)0;
5 0.0920 : mpattern=patt;

10 0.1841 : pattern_buf=patt;
:

10 0.1841 : where=(unsigned long long *)buffer;
:

2 0.0368 : if(!verify)
: printf("\nOOPS Entered unexpectedly !!! \n");
:

4 0.0736 : if(sverify == 2)
: {
: : }

• Oprofile (sourceforge.net/projects/oprofile)

– Shows most frequently executed software
threads

– Very low overhead

– Benefits
• FOSS

• Allows engineers to understand the behavior
of the software

• Reveals excessive processing / loops

• Identifies areas for further instrumentation

Process-Level View

Source-Code Annotation

Slide 23Slide 23

Summary

U.S. Navy Photo

Slide 24Slide 24

Summary

• Highly configurable suite of open source, commercially
available, and developed tools that can provide
measurements and diagnostics across the enterprise

Development Site Test Facility Shipyard Integration Deployed Systems

Validation of the SW
during development

phase
System validation, diagnostics, operability tests

Runtime status
monitoring, operability

tests, diagnostics

Adaptable Performance Engineering Initiative

U.S. Navy Photos

Slide 25Slide 25

Code

Unit Test

Element CP
Integration & Test

Operational
Tests

System Demo &
System Qual Test

System T&E,
MEIT

Engineering
Test & Evaluation

Comp Program
Detailed Design

Computer
Program Design

CP Performance
Reqts Definition

Operational
Reqts Definition

System
Reqts Definition

Element
Reqts Definition

Early I &T, PE
Activities

Performance Engineering Initiatives

Systems
Integration,

Test and
Performance
Measurement

Initial Test and
Performance
Measurement

Summary

• Increasing our ability to characterize and analyze complex systems
in a COTS environment

Benefits
Improves System Stability

Early Identification & Resolution of Issues
Reduces System T&E Failure Rates

U.S. Navy Photo

Slide 26Slide 26

Contact Information

Edward Beck
Sr. Manager
Applied Integration Solutions

MSE, LLC
304 West Route 38
Moorestown, NJ 08057

(856) 252-2055
ebeck@missionse.com

U.S. Navy Photo

Slide 27Slide 27

Appendix

Tool Description Organization

cppcheck
Performs static analysis of C/C++ source code for software

vulnerabilities Sourceforge/projects/cppcheck

valgrind
Performs run-time analysis of executables for instances of

memory leaks Valgrind.org

collectd

Provides dynamic display of system and application
performance – cpu, memory and network utilization.

Historical data is available for trend analysis. Collectd.org

ntop Provides run-time data on network utilization Ntop.org

NightTune

Provides dynamic display of system and application
performance – cpu, memory and network utilization.

Historical data can be correlated with NightTrace data-set for
TPM analysis Concurrent Computer Corporation

NightTrace
Provides synchronized graphical or text display of all system

activity Concurrent Computer Corporation

Data Recording Provides analysis of tactical run-time extraction point data U.S. Navy / LM / MSE

oprofile
System-wide profiler for Linux systems, capable of profiling all

running code at low overhead Sourceforge/projects/oprofile

wireshark
Provides run-time analysis of detailed network packet

information Wireshark.org

Tool Reference (Origin)

	 �Performance Engineering Initiatives for Early Software Test of High Availability Systems�
	Mission Solutions Engineering, LLC
	Aegis Weapon System
	Overview
	What is Performance Engineering?
	What is Systems Integration & Test?
	Software Development Process
	Early Integration, Test & Performance Engineering
	Catalyst for Performance Engineering Initiatives
	Catalyst
	Catalyst
	Catalyst
	Catalyst
	Performance Engineering Framework
	PE Framework
	PE Framework
	PE Framework
	PE Framework
	PE Framework
	PE Framework
	PE Framework
	PE Framework
	PE Framework
	Summary
	Summary
	Summary
	Contact Information
	Appendix

