

Overview of Gridscale Rampable Intermittent Dispatchable Storage (GRIDS) Program

Mark Johnson, Program Director Advanced Research Projects Agency – Energy

September 12, 2011

US Power Grid: World Largest Supply Chain With No Warehouse

Electric Grid: Premier
Achievement of
20th Century [NAE]

Harness Renewable Power: #1 Grid Challenge for 21st Century

Storage Separates Electric Generation and Load in Space and Time

Electric Energy Storage Applications

Ancillary Reliability Generation Related Attributes Services 「&D Related Attributes **Power Quality** Renewable Integration Storage Duration Congestion Generator **Cycling Cost** Relief **Asset Capacity** Asset Utilization T&D Upgrade Price Arbitrage Peak Shaving Deferral T&D Life Rate Optimization Extension

Storage For Firming Renewables

Problem:

Minutes-to-Hours Changes in Power

Need: Grid Storage that is Dispatchable and Rampable

ARPA-E: Energy Storage to Enable High Penetration of Renewables

High Renewable Generation Integration Challenge is a <u>Grid Problem</u>, not a <u>Generator Problem</u>

- Larger Balancing Authority
- Increase Transmission Capacity
- Improved Situational Awareness
 - Real Time Knowledge
 - Improved Weather Models
 - Generation Protocols
- New Storage Technologies
- Or More Spinning Reserves

Balancing Reserves Firming Wind Generation for High Renewable Penetration on Power Grid

System Challenge: Efficient Energy Storage at Minutes to Hours Duration to Firm Ramping Balance

Sun Mon Tue Wed Thu Fri Sat

Sun Mon Tue Wed Thu Fri

0.0

Grid-scale Rampable Intermittent Dispatachable Storage (GRIDS) Metrics

Economics of Hydro / Deploy Anywhere

Technology Agnostic:
Chemical, Mechanical, Electromagnetic

Connect Across Industry for Handoffs

Focus: Transformational approaches to energy storage to enable low cost

New Technology Need: Cost-Effective Energy Storage Solutions

Portfolio of Projects

UNIVERSITY/ LAB

Rechargeable Fe-Air Battery

Advanced Flow Battery

SMALL BUSINESS

High Power Metal-air Storage

Fuel-Free Isothermal Compression

CORPORATION

Advanced Flow Battery

Soluble Lead Flow Battery

2G-HTS SMES

Transformative Electrochemical Flow Storage System

Pratt & Whitney Rocketdyne, Inc.

A unique flow battery cell that provides 10X increase in power density

Novel cell will reduce system cost by 2-4X

Initially Vanadium redox chemistry

Jump-starts domestic effort in redox flow batteries, which had migrated out of North America

Cell power density comparison (W/cm²)

Rechargeable Iron-Air Battery

Cell Reaction:

Fe + H_2O + $\frac{1}{2}O_2 \Leftrightarrow Fe(OH)_2$ <u>Anode:</u> (discharge)

Fe + 20H⁻ \Rightarrow Fe(OH)₂ + 2e⁻ <u>Cathode:</u> (discharge) $\frac{1}{2}$ O₂ + H₂O + 2e⁻ \Rightarrow 2OH⁻

< \$100/kWh & >5000 cycles high power, low cost, electrochemical storage

"Iron is Cheap, Air is Free"

State of the Art Flywheel Storage Progression

100 KWH
ARPA-E Supported

Grid Scalable Lead Acid Battery

Innovations

- MSA-based electrolyte
- Carbon-based electrodes
 - Flow-battery design

Impact

- Cost Reduction
 - Grid Scalable
- Cycle-life Improvement

Superconducting Magnet Energy Storage

400kW PowerPod™ System Concept

Fuel-Free Isothermal Compressed Air Storage

Innovative Technology: New Isothermal Compressor / Expander

Critical Materials in Clean Energy

1																	2
Н																	He
Hydrogen																	Helium
1.00794		ı													_		4.003
3	4											5	6	7	8	9	10
Li	Be											В	C	N	О	F	Ne
Lithium 6.941	Beryllium 9.012182											Boron 10.811	Carbon 12.0107	Nitrogen 14,00674	Oxygen 15,9994	Fluorine 18,9984032	Neon 20,1797
11	12											13	14	15	16	17	18
Na	Mg											Al	Si	P	S	Cl	Ar
Sodium 22.989770	Magnesium 24,3050											Aluminum 26,981538	Silicon 28,0855	Phosphorus 30,973761	Sulfur 32,066	Chlorine 35,4527	Argon 39,948
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K	Ca	Sc	Ti	\mathbf{V}	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
Potassium	Calcium	Scandium	Titanium	Vanadium	Chromium	Manganese	Iron	Cobalt	Nickel	Copper	Zinc	Gallium	Germanium	Arsenic	Selenium	Bromine	Krypton
39.0983	40.078	44.955910	47.867	50.9415	51.9961	54.938049	55.845	58.933200	58.6934	63.546	65.39	69.723	72.61	74.92160	78.96	79.904	83.80
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	I	Xe
Rubidium 85.4678	Strontium 87,62	Yttrium . 88,90585	Zirconium 91.224	Niobium 92,90638	Molybdenum 95,94	Technetium (98)	Ruthenium 101.07	Rhodium 102,90550	Palladium 106.42	Silver 107,8682	Cadmium 112,411	Indium 114,818	Tin 118.710	Antimony 121,760	Tellurium 127,60	Iodine 126,90447	Xenon 131,29
55	56	57	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba	La	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	Tl	Pb	Bi	Po	At	Rn
Cesium	Barium	Lanthanum	Hafnium	Tantalum	Tungsten	Rhenium	Osmium	Iridium	Platinum	Gold	Mercury	Thallium	Lead	Bismuth	Polonium	Astatine	Radon
132.90545	137.327	138.9055	178.49	180.9479	183.84	186.207	190.23	192.217	195.078	196.96655	200.59	204.3833	207.2	208.98038	(209)	(210)	(222)
87	88	89	104	105	106	107	108	109	110	111	112	113	114				
Fr	Ra	Ac	Rf	Db	Sg	Bh	Hs	Mt									
Francium	Radium	Actinium	Rutherfordium	Dubnium	Seaborgium	Bohrium	Hassium	Meitnerium	(2.60)	(272)	(277)						
(223)	(226)	(227)	(261)	(262)	(263)	(262)	(265)	(266)	(269)	(272)	(277)						

Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Cerium 140.116 Ytterbium 173.04 Promethium (145) 92 93 96 100 102 Th U Cf Es Pa Pu Cm Bk Fm MdNo Np Am

Vehicles

Lighting

Solar PV

Wind

US DOE: Critical Materials Strategy (Dec 2010)

Shifting Economics Of Rare Earth Materials

Within 5 Years: World's Dominant Supplier of Rare Earth Materials May Switch From a Net Exporter to a Net Importer

Coordinated Critical Materials Effort

Rare Earth Criticality by Element

US DOE: Critical Materials Strategy (Dec 2010)

Developing Technology Alternatives Across Supply Chain

Possible Approach: Get Most From Available Supply

					- 10								
58	59	60	61	62	63	64	65	66	67	68	69	70	71
Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu
Cerium	Praseodymium		Promethium	Samarium	Europium	Gadolinium	Terbium	Dysprosium	Holmium	Erbium	Thulium	Ytterbium	Lutetium
140.116	140.90765	144.24	(145)	150.36	151.964	157.25	158.92534	162.50	164.93032	167.26	168.93421	173.04	174.967
0.0	0.1	02	0.2	0.4	0.5	06	0.7	0.0	00	100	1.0.1	102	102
70	1)2	25	74)5	70) /	70	//	100	101	102	105
Th	Pa	U	Np	Pu	Am	Cm	Ex	Cf	Es	Fm	Md	No	Lr
Thorium	Protactinium	Uranium	Neptunium	Plutonium	Americium	Curium	Berkeriun	Californium	Einsteinium	Fermium	Mendelevium	Nobelium	Lawrencium
232.0381	231.03588	238.0289	(237)	(244)	(243)	(247)	(247)	(251)	(252)	(257)	(258)	(259)	(262)

Light Rare Earth Elements

Heavy Rare Earth Elements

Possible Approach: Eliminate Need for Material

REACT PROGRAM: WORKSHOP GUIDED FOCUS

Application Technologies

High Energy Permanent Magnets for Hybrid Vehicles and Alternative Energy (FOA1)

G. Hadjipanayis – U Del (Subs V. Harris - Northeastern, D. Sellmyer - U of Nebraska, R. McCallum - Ames, E. Carpenter - VCU, J. Liu – EEC Fed: \$4462K – Match \$1146K, 36 months

- Target: (BH)_{max}> 100 MGOe, no rare earth restriction (RT)
- Permanent magnets based on newly-discovered compounds
- New doped Fe-Co intermetallics
- Anisotropic nanocomposite magnets via a bottom-up fabrication routes
- Modeling for validation

Transformational NanoStructured Permanent Magnets

F. Johnson et al. (GE Global Research) Fed: \$2250K - Match \$750K, 24 months

Core@Shell Hard/Soft Exchange Spring Coupled Nanocomposite Magnets with:

- 80 MGOe (vs 59 MGOe NdFeB)
- 59 MGOe with 80% less rare earth

NdFeB: (Hard) $H_c = 10,000 - 12,000 \text{ Oe}$ $B_r = 11-15 \text{ kG}$ Fe: (Soft) $H_c = 0.05 \text{ Oe}$ $B_r = \sim 22 \text{ kG}$

Questions?

