

Power Electronics

Rajeev Ram, Program Director, ARPA-E

2010: 30% of all electric power flows through power electronics

2030: 80% of all electric power will flow through power electronics

What is Power Electronics?

"The task of power electronics is to process and control the flow of electric energy by supplying voltages and currents in a form that is optimally suited to the load."

> Power Source

AC/DC Conversion

DC/AC Conversion

Load

DC/DC Conversion

battery

AC/AC Conversion

Agile Delivery of Electrical Power Technology (ADEPT)

- 30-50% of cost for dimmable LED luminaire
- 20% energy loss in industrial motors due to mechanical throttling
- 20% of material cost for HEV is power electronics
- 'No bleed' More Electric Airplanes give 41% reduction in non-thrust power

One-slide Tutorial

480V AC Output

- Switches convert DC to Distorted AC
- Inductors (L) and Capacitors (C) clean AC
- Transformer changes AC voltage level

Magnetics and Cost

- largest, most expensive part of the converter

>92% Dimmable LED Driver (comm. 37-50% of luminaire cost)

AC/DC Converter

Magnetics

1MW Photovoltaic Inverter

O Satron

(\$0.2/W)

40% Magnetics

Limits to Scaling with Frequency & Power

At hi-frequency, Loss Increases

Energy lost in rotating recalcitrant domains... requires soft magnets, low coercive fields

Energy lost induced electrical current... requires electrically insulating material (>1 mOhm.cm)

- Ferromagnetic coupled particles or 2D flakes/laminates
- High resistivity (300 ~ 600 μΩ·cm) controls eddy-current loss

Solid core

Miniature (Fast) Magnetics Needs Fast Switches

Bandgap (energy to 'free electron') increases

Breakdown voltage increases

Drift region can be decreased

Reduces transit time
Increases frequency
Reduces on-resistance

Operation Frequency (Hz)

ADEPT Project Example: SiC IC Bi-Directional Battery Charger

Arkansas Electric Power International (APEI): \$3.9 M, 3 years

600V SiC IC with full CAD design environment High temperature, air cooled packaged

ADEPT Project Example: 20kV & 0.4 MW Transistors for Solid-State Substations

Cree Inc.: \$5.2 M, 2 years

Improved SiC IGBTs

High voltage (20kV)
98% Efficient
50 kHz
Improved reliability & lifetime
High device yields

Improved technologies

50% reduction in total power conversion losses100X reduction in high power transformer weight

ARPA-E Supported Power Electronics Innovation

Solar ADEPT

Agile Delivery of Electrical Power Technologies

Balance of System

Power Electronics Additionality for BOS

Reducing Module and BoS Costs

- Cell, Module electronics compensates materials variability
- Streamlined engineering and installation
- AC modules
- Lightweight central inverters

UTILITY SCALE SOLAR

Goal: Consolidate the number of inverters
20 MW installation will have
20 x 1MW inverters

Barrier: Longer wiring, limited by loss

Approach: Higher DC bus voltages

DC/DC boost converters at module string (w/ MPPT)

Goal: Improve power quality while delivering cost high frequency electronics - improved EMI, reduced harmonics

Barrier: - Low loss, high-voltage switches and magnetics

- Utility 'ownership' of line frequency transformer

Approach: Wide-bandgap switches with advanced magnetic materials

COMMERCIAL ROOFTOP SOLAR

Goal: Module level MPPT (>98%)

Barrier: Cost & reliability

Approach: DC/DC or DC/AC module integrated

converters

Goal: Light weight, roof-top inverter [controversial]

99%, 200-500kW, eliminates DC conduit and wiring

Barrier: High-frequency switches and magnetics

AC switches (for current drive architectures)

Approach: Wide-bandgap switches with advanced magnetic materials

MICROINVERTERS

PV Modules with Microinverters

Barriers to adoption:

- Cost to Install
- Risk Averse Customers
- Cost to Maintain/Repair (multiple point of failure)

Utility Grid

SUB-MODULE CONTROL

Goal: Improved yield without compromising cost (\$1-2 per module) or reliability

Barrier: >99% efficient for improved yield + MPPT function for cost of a diode

Approach: Single chip DC/DC converter in Silicon

MULTISTAGE INVERTER

1/10 the weight , 1/3 lower losses, ½ the manufacturing cost

	Power (Watt)	Weight (lbs)	Lbs/kW	CEC Efficiency	Est. Mfg Cost
PVPowered	35K	1200	34	95.5%	\$10K
SATC N	30K	1204	40	95.0%	\$10K
IDEAL POWER CONVERTERS	30K	80	2.7	97.0%	<\$5K

Hi-voltage switches and hi-frequency transformer

SCALING NANOCOMPOSITE MATERIALS

From micron thin-films to mm scale inductors & transformers for 3 – 10 kW, 1 MHz

SOLAR ADEPT TARGETS

System Categories	Cost	Voltage & Power	CEC Efficiency	Size
Category 1	\$0.05/W	>3	>98%	Single-chip DC/DC
Sub-module converter		converters	cell-to-AC	Inside Module Frame
(Smart bypass)		/module	MPPT	
Category 2	\$0.20/W	>600 V	>98%	< 2 lbs
Microinverter		>250 W	cell-to-AC	Integrated: < 10 parts
(Residential)	Φ0.4000	400114/	000/	50 II
Category 3 Lightweight	<\$0.10/W	100kW	>98%	< 50 lbs
(Commercial)			cell-to-AC	
			MPPT	
Category 4	\$0.10/W	> 2 MW	>98%	< 1000 lbs
Utility-scale Converters		scalable	module-	
Converters			to-grid	

GREEN ELECTRICITY NETWORK INTEGRATION (GENI)

Designing Power Flow

Controlling Power Flow

Minimizing the cost of fuel to deliver power is Hard (NP)

Must search through many choices of generator outputs for achieving a desired load

What kind of control?

- Linear vs. Non-linear
- Deterministic vs. Stochastic
- Time-invariant vs. Time-varying
- Continuous-time vs. Discrete-time

Controlling Power Flow

Power Flow Control

- Feed-forward control
- Assume:
 - Linear
 - Deterministic
 - Time Invariant
- Central control

Error (Frequency, Voltage)

- Feedback control
- Account for
 - Non-linearity
 - Dynamics
- Distributed or local control

Benefits of Routing Power

GA Tech study of simplified IEEE 39 Bus system with 4 control areas, operation simulated for 20 years, 20% RPS phased in over 20 years, sufficient transmission capacity added each year to eliminate curtailment of renewable generation

Today: Uncontrolled Flows

Power Routing

Base Case: 3.4 MW sent; 0.34 MW recd

- BAU case requires upgrade of 3 inter-regional paths, for a total of 186,000 MW-MILES
- Power flow control to route power along underutilized paths, 36,000 MW-miles of new lines needed, only 20% of BAU

ROUTING POWER TODAY

Utility: AC Universal Power Flow Controller

Private: Multiterminal HVDC

NEXT GENERATION HARDWARE

Power Converter Augmented Transformers

LTC Transformer (Grid Asset)

LTC Transformers
Dispatchable P/Q

ARPA-E Funded

ADEPT Goal: 13kV SiC GTO

- A fail-normal mode
- Fractionally rated converters
- High-voltage components Target < \$10/Watt

- HVDC fault protection
- High capacity, low cost cable
- High-voltage, uncooled
 Target < \$200/Watt

Resilient HVDC

Control Challenges

- Traditional control theory assumes centralized feedback control.
- Not always feasible for large-scale distributed systems:
 - Inability to communicate with all subsystems
 - Incomplete/imperfect information
 - Complexity of centralized decision-making
 - Asynchrony
 - Heterogonous decision-makers with different objective and uncertain responses

Networked control (Developed since 2005)

- Several layers: Physical, communication, and decision network
 - The physical layer consists of several distributed subsystems, coupled through and/or economics, via static and/or dynamic constraints.

GENI

Control Theory Control Engineering Centralized linear Dynamic Network control Real-time Scheduling convex Architecture Routing (protocols, etc) Transmission **Hardware** Interface Hardware **HVAC** Resilient **VAR Support** Multi-term **HVDC** Point-point Storage Market **HVDC** Rules Thin AC Power Flow Control

