MURI-Funded Scientific and Technological Blockbusters from Northwestern University

Chad A. Mirkin

Department of Chemistry and International Institute for Nanotechnology Northwestern University 2190 N. Campus Drive Evanston, IL 60208-3113

MURI Support at Northwestern University

- MURI-00: Surface Templated Bio-Inspired Synthesis and Fabrication of Functional Materials (F49620-00-1-0283/P01, 2000-2006)
- <u>DURINT-01</u>: Ultrasensitive and Selective Chip Based Detection of DNA (F49620-01-1-0401, 2001-2007)
- MURI-04: Biomechanical Interfaces for Cell-based Microsystems (W911NF-04-1-0171, 2004-2009)
- MURI-07: Bio-inspired Supramolecular Enzymatic Systems (FA9550-07-1-0534, 2007-2012)
- MURI-11: Bioprogrammable One-, Two-, and Three-Dimensional Materials (FA9550-11-1-0275, 2011-2014)
- MURI-11: Conductive DNA Systems and Molecular Devices (N00014-11-1-0729, 2011-2014)

MURI-00: Surface-Templated, Bio-Inspired Synthesis and Fabrication of Functional Materials

Team

- Program Manager: H. DeLong
- <u>NU</u>
 - C. Mirkin, V. Chandrasekhar,
 - V. Dravid, R. Letsinger,
 - G. Schatz, S. Stupp, D. Ginger
- Harold Washington
 - T. Higgins
- Tufts
 - D. Kaplan
- Scripps
 - M. Ghadiri
- Perkin Elmer Applied Biosystems
 - E. Mayrand
- <u>Lucent Technologies</u>
 - P. Wiltzius
- DoD Labs
 - Valdes, Stone, Naik

Goals

- Establish rules that can be used in 2D and 3D assembly of biomolecules
- Merge solution phase assembly with DPN
- Develop computational tools to predict the properties of assembled nanostructures

Outcome

- Design rules for assembling particles into colloidal crystals with pre-conceived structures
- An understanding of the fundamental factors that control molecular transport from tipbased scanning probes

Spherical Nucleic Acid Nanostructures

SNAs Have Unique Properties Distinct From Their Linear Counterparts

Property	Spherical Nucleic Acids	Linear Nucleic Acids
Melting Transition	Cooperative and Narrow (~2-8°C)	Broad (~20°C)
Cellular Uptake	Transfection agents NOT required	Lipofectamine TM , Dharmafect TM , etc
Immune Response	Minimal	Elevated Interferon-β
Stability	Resistance to Nucleases	Rapid Degradation
Inorganic Core's	Plasmonic, Catalytic, Magnetic, Luminescent	N/A
Binding Strength	$K_{eq} = 1.8 \times 10^{14}$	$K_{eq} = 1.8 \times 10^{12}$

Properties of Hybridized Nanoparticle Probes

Color: Hybridized aggregates of DNA functionalized Au nanoparticles show distinct color changes in their hybridized (purple) and unhybridized (red) forms.

Cooperativity: Hybridized aggregates of DNA functionalized Au nanoparticles show sharper melting transitions than the same DNA duplex free in solution.

Mirkin et al, Nature 1996, Elghanian, R. et al, Science, 1997

DNA-Programmable Nanoparticle Crystallization

- DNA guides the assembly of the same inorganic particle into different crystalline states
- Solution based
- Crystallization driven by maximizing hybridization interactions
- Independently tailorable design parameters (NP size, interparticle distance, crystallographic symmetry)

Crystallization Over an Order of Magnitude of Sizes

80 nm

Diameter of NPs Crystallized

5 nm

5 nm AuNPs, 38 nm DNA

30nm NPs, [111] axis Unit Cell Edge Length ~100 nm

(Before embedding)

Diameters of NPs:

5 nm – 80 nm Crystal Lattice Parameters:

25 nm - 225 nm

Average Crystal

Size: 1.5 μm

Macfarlane et. al., Ange. Chemie Int. Ed. 2010, 49, 4589

Different Crystallographic Symmetries

Anisotropic Particle Assembly: Introducing Valency Into the Process

Hexagonal Arrays

Nanorods ("1D" Structures) form 2D

Nanoprisms ("2D" Structures) form **Linear 1D Arrays**

Octahedra can form BCC or FCC **Lattices Depending on DNA Length**

MURI-04: Biomechanical Interfaces for Cell-Based Microsystems

<u>Team</u>

- Program Manager:
 - B. LaMattina (ARO)
- University of Chicago
 - M. Mrksich, A. Dinner
- <u>NU</u>
 - C. Mirkin
- CalTech
 - M. Roukes
- University of Pennsylvania
 - C. Chen
- UCSB
 - A. Evans, R. McMeeking

DoD Labs

L. Whitman, M. Stone

Goals

- Develop an integrated platform for installing mechanical and chemical interfaces to cells.
- Employ platform in investigating chemo-mechanical signatures and actuation of cellular behavior.
- Prototype cell-based devices with high impact for the DoD.

Outcome

- An understanding of how to use scanning probe molecular printing techniques to reconstruct models of extracellular matrices.
- Unprecedented ability to manipulate individual biological entities for cell based technologies.

Dip Pen Nanolithography (DPN)

Attributes of DPN:

- Direct-write
- High resolution: 10 nm line width, ~5 nm spatial resolution
- Positive printing
- Writing and imaging with same tool

AFM Tip

The NSCRIPTORTM An Integrated DPN System

Scanning Probe Lithography: A Dichotomy is Emerging

Development of Writing & Printing Tools

Parallel Printing

Scanning Probe Molecular Printing

The Ultimate in High Density Arrays

Biological Nanoarrays:

- More than just miniaturization with higher density
- New opportunities for biodetection and studying biorecognition
- Templates for guiding the assembly of larger building blocks
- Open up the opportunity to study multivalency and surface cooperativity

Can DPN be Used To Generate Multicomponent Templates that are Used to Recognize and Larger Biological structures and Organisms?

8.5 nm
120 nm
~20 μm
~15 μm

Protein
(Human IgG)
Virus
(HIV)
Spores
(Anthrax)
Living Cells

Patterning of Biological Structures

Viruses (TMV)

Proteins

Lipids

Cells

DURINT-01: Ultrasensitive and Selective Chip Based Detection of DNA

Team

- Program Manager: H. DeLong
- <u>NU</u>
 - C. Mirkin, M. Ratner,A. Baron, C. Liu, G. Schatz
- DoD Labs: J. Valdes, M.
 Goode, M. Stone

Outcomes

 Design and creation of novel chip-based detection platforms for the detection of DNA, proteins and peptides that are currently being commercialized by Nanosphere, Inc. and AuraSense, LLC.

Goals

- Develop understanding of nanoparticle-based sensors for DNA
- Engineer chip-based detection platforms
- Design and interface target isolation and purification to integrate DNA analysis systems
- Create chip based detection strategies for rapid identification of biological warfare agents

The Properties of Spherical Nucleic Acid (SNA) Nanoparticle Conjugates

Optical

Nature, 1996. Science, 1997

Plasmonic

Cooperative Binding

Chip-Based Bio-bar-code Assay

Several iterations of protocol development were performed to adapt the standard bio-bar-code assay to micro-channels

- ➤ PDMS microfluidic chip on a glass substrate
- ➤ A magnet is placed under the chip to immobilize magnetic micro-particles

MASS UIUC

VerigeneTM System

FDA-Cleared Hypercoagulation, Warfrin Metabolism, Cystic Fibrosis, and Influenza Assays

- Direct genomic detection
- ❖ Multiplexed targets
- **❖** Automated assay process
- Ease of use
 - Minimal training required
 - Automated data tracking
 - No interpretation required

Multiplexed DNA Detection (HIV, Ebola Virus, Small Pox, Hepatitis B): Nucleic Acid Markers

Advantages of the Nanoparticle-based Bio-Barcode Assay

- Up to 10⁶ times more sensitive than conventional ELISAs.
- 2. Evaluate new biomarkers for diagnosing and following human diseases (e.g. HIV, Cancer, and Alzheimer's Disease).
- 3. Single-cell protein expression experiments.

Field Defining Technologies

Detection/

Concentration	Molecule/Drop	Targets/Disease
10 ⁻³ - Millimolar	Quadrillions	Colorimetric/ Enzymatic Chemistry Blood Sugar (Diabetes)
10 ⁻⁶ - Micromolar	Trillions	
10 ⁻⁹ - Nanomolar	Billions	ELISA & Chemiluminesence Troponin, CK-MB, BNP, βHCG
10 ⁻¹² - Picomolar	Millions	Troponini, Ort-MB, BNT, priod
10 ⁻¹⁵ - Femtomolar	Thousands	Bio-barcode Technology Alzheimer's Disease, Mad Cow, Ovarian, Breast, and many other cancers, Pulmonary Disease, Cardiovascular Disease
10 ⁻¹⁸ - Attomolar	Tens	
10 ⁻²¹ - Zeptomolar	<1	

Bio-barcode Assay Detects PSA Levels Undetectable by ELISA (450 patient study)

Acknowledgements

ASD (RE), AFOSR, ARO DARPA, and ONR

