

Human Systems Priority Steering Council

Dr. John Tangney

Lead, PSC/HS
Office of Naval Research

NDIA 8th Annual Disruptive Technologies Conference 8 November 2011

New NDIA Division HUMAN SYSTEMS

Mission

To <u>promote the exchange of technical information and discussions</u>
<u>between government, industry, and academia</u>, and the expansion of research and development in areas <u>related to the human as a system</u> whose performance must be integrated into any system of systems

Objectives

- Advocate human-centered research and the integration of cognitive and biological technologies
- Promote discussions to <u>make the "human factor" a top priority</u> in Research, Development, Test and Evaluation (RDT&E)
- Conduct studies and prepare reports in response to requests from the DoD HS Community of Interest (Col)
- Advocate, lead, and influence increased discussion and research on the <u>elements of human-system integration (HSI) domains</u>

Chair: Dr. Greg Zacharias, Charles River Assoc

Human Systems Overall Scope

System Interfaces

Strategic Decisionmaking

Tactical Decision Support

Autonomous vehicle control

Cyber Operations & Trust

Adaptive Planning

Personnel & Training

Adaptive, tailored instruction

Live, Virtual, Constructive simulation

Realistic immersive training

Train Partner State Forces

Social & Cultural Understanding

Information sharing w/ partners

Cultural situation awareness

Cultural & language expertise

Social Network
Analysis
Cultural impact of
actions

Protection & Sustainment

Extreme environment protection

Physical Performance Enhancement

Autonomous augmentation

Physical Aiding

Extended Combat Rations

Human Systems Priority Steering Council FY13-17 Priority S&T

System Interfaces

Strategic Decisionmaking Tactical Decision Support Autonomous vehicle control

Cyber Operations & Trust

Adaptive Planning

Personnel & Training

Adaptive, tailored instruction
Live, Virtual, Constructive simulation
Realistic immersive training
Train Partner State Forces

Major Focus of PSC

Human Systems Training for Readiness

Problem: Complex Evolving Threats Outpace Readiness Training

- Warriors train for tomorrow's fight using yesterday's technology, methods, and strategies
- Current training scenarios not matched to evolving mission complexity and dynamics
- Warfighters are trained to doctrine -- fight strategically and dynamically to meet new threats
- Training is costly
 - Live systems deplete inventory, consume fuel, require maintenance & wear out
 - Ranges & role players are expensive lack responsiveness to changing scenarios
 - Training ranges not designed for flexible training and throughput is inadequate

Training Technology End States

Human Systems Training Technical Challenges

Challenge 1: First Principles for Training Design

- Synthetic environments for experimentation and learning
- Techniques to automatically capture operationally relevant measures of performance
- Validated tools to optimize training outcomes across individuals and teams

Challenge 2: Realistic, Adaptive and Interactive Scenario Based Training

- Persistent integration of real world events and content into scenarios and syllabi
- Demonstrated and validated for the full range of warfighter capabilities reflecting recent lessons learned
- Training that adapts to individual needs of warfighters in near real-time
- Trading realism for flexibility

Challenge 3: Persistent, Affordable, Integrated Training

- Mission-focused training simulations that support individual and collective training
- Seamless, secure integration of training systems across services and coalition partners

Human Systems Training - Measures of Success

Challenge 1: First Principles for Training Design

- Calibrating training to mission effectiveness
- Automated feedback for unit performance mission training scenarios

Challenge 2: Realistic, Adaptive and Interactive Scenario Based Training

- Automatic players in training scenarios indistinguishable from live players ('Turing Test')
- Improved performance resulting from training that automatically adapts in near real time
- 25% reduction in time and cost to develop training scenarios

Challenge 3: Persistent, Affordable, Integrated Training

- Capability to author once and deliver training to any internet-capable device
- Affordable, turnkey capability to link simulations across services for joint training exercises.

Human Systems Interface for Effectiveness

Problem: Current system operation is rigidly data-centric vice flexibly information-centric

- Modern technologies exacerbate critical manning and talent pool deficiencies by ignoring role of Mission, Task & Context – Moving & presenting data vice information
- Current adaptive planning tools do not allow rapid "course of action" analysis and generation
- Information displays typically non-interactive, adapting little to changing needs
- Data quantity will continue to increase nonlinearly

Virtual lab

Actual lab

Interfaces **Technology End States**

Mission Effectiveness (re US capability)

- Task-centric interfaces for increased speed and accuracy of decisions
 - Model context and decision space
 - Situation sensitive adaptive interface
- Mission-centric automated information analyses (e.g. prioritized COA recommendations) 5
 - Operator state driven tailored information

10

10+

- Context sensitivity to Commander's intent
- Common control station for UxS
- Tactically believable agents

10

5

- Natural language dialogue
- Influence operator state
- Social Cognitive Architectures for synthetic teammate development 10+
 - Hybrid force demonstration for multiple UxVs via natural manmachine interactions

Mission Complexity

Human Systems Interface Challenges

Challenge 1: Human-Machine Teaming

- Robots that can participate in realistic dialogue with the operator
- Domain-agnostic performance metrics for human-machine interactions

Challenge 2: Intelligent, Adaptive Aiding

- Adaptive determination of relevant data for human-machine interaction
- Platform-independent frameworks to capture cognitive concepts of rich user models: beliefs, desires, intentions, obligations, and goals

Challenge 3: Intuitive Interaction

- High fidelity operator state modeling with information from rich user models
- Coordinated command and control of hybrid forces

Human Systems Interface - Measures of Success

Challenge 1: Human-Machine Teaming

- Number of agents controlled by single operator (x \rightarrow 10x)
- Percent of warfighters serviced
- Percent of operator requests anticipated to criterion (0% → 90%)
- Latency for machine-generated alternative courses of action $(2\tau \rightarrow \frac{1}{2}T)$

Challenge 2: Intelligent, Adaptive Aiding

- Speed and accuracy of decisions x scope (search time = 0)
- Transaction efficiency = ratio of relevant/irrelevant data
- Increased situation salience

Challenge 3: Intuitive Interaction

- Accuracy of operator state assessment for information optimization
- Effectiveness of natural dialogue (transaction efficiency)
- Ease of interaction, time to achieve full competency

Human Systems Broad Agency Announcements

USAF

- BAA 09-05-RH Science and Technology For Warfighter Training and Aiding
 - POC: Dr. Winston Bennett
- BAA 09-04-RH Warfighter Interface Technologies Advanced Research Programs (WITARP)
 - POC: Mr. Randy Yates
- BAA 09-02-RH Advances in Bioscience for Airmen Performance
 - POC: Mr. Mark Fagan
- BAA 09-03-RH Research & Analytical Support for the 711th HPW Human Effectiveness Directorate
 - POC: Ms. Linda Lange
- BAA-AFOSR-2011-01 Research Interests of the Air Force Office of Scientific Research
 - POC: Dr. Hugh DeLong

Navy

- ONR BAA 11-031 Office of Naval Research (ONR)
 - POC: Dr. William Krebs
- ONR BAA 12-001 Office of Naval Research (ONR) Long Range BAA
 - POC: Dr. William Krebs

Human Systems Broad Agency Announcements

Army

- 11 13 Natick BAA Broad Agency Announcement (BAA) For Basic and Applied Research
 POC: Multiple
- W5J9CQ-11-R-0017 U.S. Army Research Institute (ARI) for the Behavioral and Social Sciences
 - POC: Jim Belanich
- W5J9CQ-12-R-0002 United States Army Research Institute for the Behavioral & Social Sciences
 - POC: Dr. Jay Goodwin
- W911NF-07-R-0003-04 Army Research Office Broad Agency Announcement for Basic and Applied Scientific Research
 - POC: Dr. Robert Ulman
- W91CRB-08-R-0073 Research, Development and Engineering Command Simulation and Training Technology Center
 - POC: Dr. Frank Tucker
- W911NF-07-R-0001-05 Army Research Laboratory and the Army Research Office Broad Agency Announcement for Basic and Applied Research
 - POC: Dr. Tomasz Letowski

Summary

- Evolving threats outpace contemporary readiness training
- Interfaces are not operator/information-centric
- Training Goals
 - Synthetic environments for mission training
 - Continuous, real-time training with LVC multinational partnering
 - Seamless, secure integration of training systems across services

Interface Goals

- Frameworks that capture the intentions & obligations of the operator
- Integrated data based on operators' modeling of natural language & gestures
- Human-machine teaming based on immediate feedback and accurate predictions of operators' mental states via interactions