

MARINE A VIA TION

NDIA Expeditionary Warfare Conference

October 2011

Col Gary Kling

Acquisition Marine Style

= Marine Aviation

Go Kill something

Hurry Up - - go!

Functions of Marine Aviation

Marine Aviation

- Offensive Air Support
- Anti-Air Warfare
- Assault Support
- Air Reconnaissance
- Electronic Warfare

Control of Aircraft and Missiles

Acquisition for Maneuver Warfare

Marine Aviation

- Maneuver Warfare
 - Flexibility
 - Speed/Tempo
 - o Surprise/Initiative
- How do we maintain a technological advantage <u>and</u> the appropriate capacity to meet the challenges across the ROMO, in an increasingly volatile world, and still have a treasury?
- Challenge How to acquire cost effective systems to enhance Expeditionary Maneuver Warfare.
 - Adaptive
 - Lack of speed in acquisition breeds requirements creep
 - o Moore's law vs the "good idea cutoff date"

Threats / Views

Marine Aviation

- State and Non-state
- Terrorism / Criminals / Insurgents / industrial espionage
- Hybrid
- Declining power? Reluctance to engage?
- Deterrence?
- Increased frequency for volatility and instability
- Distributed ops re-aggregation
- Multi-domain air, sea, land ,cyber, space

Upon what strategy and assumptions do you base long term acquisitions when making decisions for the next 30-50 years?

DOD Budget Context

DON Aviation Budget Context

PB-12 30 Year Aircraft Investment Plan

Marine Aviation Transition Strategy

MWSS

Marine Aviation

Expeditionary Operations

- MWSS is the critical enabler to ACE operations
- Tactical and Strategic Agility
- Realignment of MWSS under MAG

EAF 2000 Reconstitution

- o AM-2 Retrograde and Refit(6 million sq ft installed ISO OEF)
- Next Generation Airfield Lighting/Matting

Enables All Six

Control of Aircraft and Missiles Anti-Air Warfare Assault Support Aerial Reconnaissance Offensive Air Support Electronic Warfare

F-35B JSF Update

Control of Aircraft and Missiles Anti-Air Warfare Assault Support Aerial Reconnaissance Offensive Air Support Electronic Warfare

MV-22B Osprey

Control of Aircraft and Missiles Anti-Air Warfare Assault Support Aerial Reconnaissance Offensive Air Support

Electronic Warfare

= Marine Aviation

Since the FY11 Marine Aviation Plan

- 11th deployment:
 - 3 x OIF, 4 x MEU, 4 x OEF

- Enhanced Capabilities:
 - o Expanded Battlespace Maneuver
 - Complicates the Enemy's defense
 - Increases Stand-off basing

POR: 360 aircraft

AC: 16 X 12 aircraft RC: 2 X 12 aircraft

Squadrons: 16 active, 2 reserve

MV-22B Osprey

Marine Aviation

"Turns Texas into Rhode Island."

- BGen Alles, CG ACE MNF-W

MV-22 MISSION SNAPSHOT

Operation Odyssey Dawn

Marine Aviation

26 MEU MV-22's prepare to launch from USS Kearsarge

Afghanistan Retrograde

Marine Aviation

6 x MV-22's, 3 continents, 10 countries, 3432 NM 25 Marines, 15000 lbs of cargo, 15+25 hrs

KC-130J

Enables All Six
Control of Aircraft and Missiles
Anti-Air Warfare
Assault Support
Aerial Reconnaissance
Offensive Air Support
Electronic Warfare

Marine Aviation

- Active FOC by 31 Dec 2011
- Reserve transition ~ FY15-26
- Enhanced Capabilities:
 - More efficient aerial delivery
 - Twice the delivery rate for Rapid Ground Refueling (RGR) ops
 - o 21% increase in speed
 - Shorter Take-off distances
 - Common engine to the MV-22
 - Integrated ASE

POR: 79 aircraft

AC: 3 X 15 aircraft RC: 2 X 12 aircraft

Squadrons: 3 active, 2 reserve

KC-130J Harvest HAWK

Marine Aviation

- Persistent ISR and attack capability conducted from KC-130 J
 - o Preserves refueling capability from RH AAR Pod.
- System Components
 - AN/AAQ-30 Targeting Sight System (TSS)
 - o RO/RO fire control station on modified pallet
 - o AGM-114P Hellfire II in place of left AAR pod
 - o Griffin Stand Off Precision Guided Munitions
 - Video Downlink to Rover

CURRENT FORCE:

- 1 AC VMGR SQDN x 2 MISSION KIT
- 1 AC VMGR SQDN x 1 MISSION KIT

FORCE GOAL:

2 AC VMGR SQDN x 3 MISSION KITS

One kit deployed since Oct 2010 - Identified 8 confirmed and multiple suspected IEDs Employed 74 Hellfire & 13 Griffin - Feedback from supported units is outstanding

Harvest Hawk

— Marine Aviation

H-1 Program

Control of Aircraft and Missiles Anti-Air Warfare Assault Support Aerial Reconnaissance Offensive Air Support Electronic Warfare

= Marine Aviation

- AH-1Z IOC (February 2011)
 - 84% commonality between Y/Z
 - Reduction in logistics/training requirements
- To date:
 - ~48 Yankees / ~19 Zulus delivered
- Enhanced Capabilities:
 - Yankee
 - Double the range and payload
 - 170 kts versus 130 kt Vne
 - 8 Fully loaded Marines
 - Digitally integrated cockpit
 - Zulu
 - Improved Sensors Max range
 Weapons employment
 - Double the Range

POR: 349 aircraft (160 Y, 189 Z)

AC: 8 X 15Z / 12Y aircraft RC: 1 X 15Z / 12Y aircraft

Squadrons: 8 active, 1 reserve

UAS Family of Systems

Control of Aircraft and Missiles
Anti-Air Warfare
Assault Support
Aerial Reconnaissance
Offensive Air Support
Electronic Warfare

Marine Aviation

- RQ-7B Weaponization approved
- RQ-21 Small Tactical UAS (STUAS) early operational capability
 - o Fielded starting in Sep 11
- Planned Cargo UAS deployment to OEF
 - o Nov 11
- VMU-3 moving to 1st MAW

Ground/Air Task Oriented Radar (G/ATOR) Transition

Marine Aviation

- G/ATOR: A MAGTF Weapon System
 - Incr I: Air Defense/Surveillance Radar
 - Incr II: Ground Weapon Locating Radar
 - Incr IV: Air Traffic Control
- Both Engineering Development Models (EDMs) are meeting integration and testing expectations
 - G/ATOR Incr. 1 EDM's are detecting and tracking air traffic at BWI.

G/ATOR replaces 5 legacy radars: TPS-63, TPS-73, TPQ-46 UPS-3 and MPQ-62

- Program is on schedule
- Program is resourced in PB 12
- AAO:

ACE Qty 31 (Incr I & IV)

GCE Qty 38 (Incr II)

Total 69

Capability Drivers

Marine Aviation

- Decrease the Size and weight
 - Lighten the MAGTF OPT ongoing
 - o 2010 MEU ACE ~ 520 K; 2020 MEU ACE ~ 800 K
- Increase the speed
 - Sensor to shooter and Kill Chain information
 - FMV, VMF, Digital Interoperability
- Increased efficiency
 - Fuel, Batteries, O&M costs

Acquisition Challenges

Marine Aviation

Defining requirements:

- o What is the problem we are trying to solve?
- Tension between clarity / industry creativity / contract legality / length of need
- o What capacity?

Contracting:

- Takes too long
 - UAS contract in work for 2.5 years

Multiple transitions simultaneously

USMC / DoD transitions

Sustainment and Relevance

- Sustainment for the new & Legacy platforms
- Mod / upgrade costs

Acquisition for 2025 and beyond

Marine Aviation

- Must Avoid a single view of warfare
 - The only thing certain is uncertainty
 - Surprise will be the dominant factor
- Hybrid Warfare Train and equip for ROMO
- Cost imposing strategies
 - o How do we make war too expensive (at least more expensive) for the enemy?
- Time to train & Dwell vs multi-mission platforms
 - Readiness
 - Service life
 - o Simulation
- Expeditionary subsystems Integrated Capabilities
 - Maintenance, sustainment, training, weapons, security, interoperability
 - LHA (R) FUEL, Maint space, C2 options

MARINE A VIA TION

